UNCERTAIN COMPUTATION-BASED DECISION THEORY

Rafik Aliev
Azerbaijan State Oil and Industry University, Azerbaijan
Contents

Preface vii

1. Decision Environment 1
 1.1 Certain environment 1
 1.2 Risk environments 3
 1.2.1 Expected utility theory of von Neumann and Morgenstern 3
 1.2.2 Prospect theory 7
 1.3 Uncertain environment 9
 1.3.1 The Laplace criterion, the Hurwitz criterion and the minimax regret criterion 9
 1.3.2 Subjective expected utility theory of Savage 11
 1.3.3 Choquet expected utility 12
 1.3.4 Multiple priors models 14
 1.3.5 Cumulative prospect theory 20
 1.4. General theory of decisions 21

2. Analyses of the Existing Decision Theories 25
 2.1 A brief review of the main existing decision theories 25
 2.2 Comparison of existing decision theories 28

3. Interval Computation 33
 3.1 Classical interval arithmetic 33
 3.2 Preference relations of interval values 37
 3.3 Relative distance measure based interval arithmetic 38
 3.4 Solving interval equations 41

4. Probabilistic Arithmetic 45
 4.1 Operations on random variables 45
 4.2 Estimation of statistical characteristic of interval uncertainty 53
 4.2.1 Statistical estimates 54
 4.2.2 In general case when the distributions are not necessarily Gaussian 55
 4.2.3 Complexity of the estimation calculation 63
5. Fuzzy Type-1 and Fuzzy Type-2 Computations
 5.1 Type-1 fuzzy sets and numbers
 5.2 Type-2 fuzzy sets and numbers
 5.3 Arithmetic with continuous type-1 fuzzy numbers
 5.3.1 Method based on the extension principle
 5.3.2 Method based on interval arithmetic and α-cuts
 5.4 Arithmetic with discrete type-1 fuzzy numbers
 5.5 Arithmetic of type-2 fuzzy numbers
 5.6 Horizontal membership function based fuzzy arithmetic
 5.7 Adequacy of fuzzy models
 5.8 Fuzzy logic formalization for approximate reasoning

6. Computation with Z-Numbers
 6.1 Z-number, Z-information
 6.2 The arithmetic with continuous Z-numbers
 6.2.1 State-of-the-art
 6.2.2 General procedure of computation with Z-numbers
 6.2.2.1 A general approach suggested by L. Zadeh
 6.2.2.2 The suggested approach
 6.2.3 Operations on continuous Z-numbers
 6.2.3.1 Addition of continuous Z-numbers
 6.2.3.2 Standard subtraction of continuous Z-numbers
 6.2.3.3 Multiplication of continuous Z-numbers
 6.2.3.4 Standard division of continuous Z-numbers
 6.2.3.5 Square of a continuous Z-number
 6.2.3.6 Square root of a continuous Z-number
 6.2.3.7 Minimum and maximum of continuous Z-numbers
 6.3 The arithmetic of discrete Z-numbers
 6.3.1. Discrete Z-numbers
 6.3.1.1 Addition of discrete Z-numbers
 6.3.1.2 Standard subtraction of discrete Z-numbers
 6.3.1.3 Multiplication of discrete Z-numbers
 6.3.1.4 Standard division of discrete Z-numbers
 6.3.2. Power of a discrete Z-number
 6.3.2.1 Square of a discrete Z-number
 6.3.2.2 Square root of a discrete Z-number
6.4. Z-numbers valued functions
 6.4.1 Methodology for construction of functions of Z-numbers 154
 6.4.2 Basic properties of functions of Z-numbers 159
6.5 Reasoning with Z-information 166
 6.5.1 State-of-the-art 166
 6.5.2 Fuzzy and Z-number-valued If-Then rules 169
 6.5.3 Approximate reasoning with Z-rules
 6.5.3.1 Linear interpolation-based reasoning with Z-rules 173
6.6 Ranking of Z-numbers 175
 6.6.1 State-of-the-art 175
 6.6.2 Ranking of Z-numbers 176
6.7 Aggregation of Z-information 182
 6.7.1 State-of-the-art 182
 6.7.2 Aggregation operators for Z-numbers based information
 6.7.2.1 Z-arithmetic mean 185
 6.7.2.2 Z-geometric mean 185
 6.7.2.3 Z-weighted arithmetic mean 186
 6.7.2.4 Z-T-norm and Z-T-conorm operators 186
 6.7.2.5 Z-ordered weighted averaging operators 187
6.8 Z-numbers and type-2 fuzzy sets: A representation result 189
 6.8.1 Z-numbers and type-2 fuzzy sets 189
 6.8.2 Data processing to Z-numbers and type-2 fuzzy set 194

7. Computation with U-Numbers 199
 7.1 Usuality and U-number concept 199
 7.2 A general approach to computation with U-numbers 201
 7.3 Approximate reasoning with usual information 207

8. Fuzzy Geometry Based Computations 209
 8.1 Geometric primitives and incidence 210
 8.2 Fuzzification of incidence geometry 211
 8.2.1 Proposed fuzzy logic 211
 8.2.2 Geometric primitives as fuzzy predicates 213
 8.2.3 Formalization of fuzzy predicates 217
 8.3 Fuzzy axiomatization of incidence geometry 223
 8.3.1. Equality of extended lines is graduated 228
8.4 Equality of extended points and lines
 8.4.1 Metric distance
 8.4.2 The t-norm
 8.4.3 Fuzzy equivalence relations
 8.4.4 Approximate fuzzy equivalence relations
 8.4.5 Boundary conditions for granularity
8.5 Fuzzification of the Euclid's first postulate
 8.5.1 The Euclid's first postulate formalization
 8.5.2 Fuzzy logical inference for the Euclid's first postulate
8.6 Example
8.7 Decision making in visual information environment

9. Interval Granular-Based Decision Making
 9.1 Decision making with interval probabilities
 9.1.1 Consistency of interval probabilities
 9.1.2 Statement of the problem and its solution
 9.2 Interval-based multi-attribute decision making
 9.3 Interval linear programming based decision making

10. Decision Making in Fuzzy Environment
 10.1 Fuzzy decision theory with imperfect information
 10.1.1 State-of-the-art
 10.1.2 Definitions
 10.1.3 Statement of the problem
 10.2 Fuzzy optimality based decision making
 10.2.1 State-of-the-art
 10.2.2 Some preliminary information
 10.2.3 Statement of the problem
 10.2.4 Method of solution
 10.3 Decision making with combined states
 10.3.1 State-of-the-art
 10.3.2 Statement of the problem
 10.3.3 Utility model axiomatization
 10.3.4 Solution of the problem
 10.4 Fuzzy economics and decision making
 10.5 Type-2 fuzzy clustering
 10.5.1 State-of-the-art
 10.5.2 Type-2 fuzzy clustering and rule extraction
10.6 Fuzzy regression analysis
 10.6.1 State-of-the-art 344
 10.6.2 Statement of problem 346
 10.6.3 Genetic algorithm for defining parameters of fuzzy regression model 347
 10.6.4 Simulations 352

11. The Z-Restriction Centered Decision Theory 355
 11.1 The Z-restriction based general decisions theory 355
 11.1.1 Motivation 355
 11.1.2 A unified decision model 359
 11.1.2.1 Formal framework 359
 11.1.3 Discussion of some special cases 362
 11.1.4 Methodology for the general theory of decisions 366
 11.2 Z-number based linear programming 369
 11.2.1 State-of-the-art 370
 11.2.2 Statement of a Z-number based linear programming problem 371
 11.2.3 Solution method 375
 11.3 Fair price based decision making under interval, set-valued, fuzzy, and Z-number uncertainty 377
 11.3.1 Case of interval uncertainty 379
 11.3.2 Case of set-valued uncertainty 384
 11.3.3 Case of Z-valued uncertainty 385
 11.3.4 Case of fuzzy uncertainty 392
 11.4 Z-regression analysis 397
 11.4.1 Z-regression model 398

12. Simulation and Applications 401
 12.1 Decision making for well interventions under interval probability 401
 12.1.1 Statement of the problem 402
 12.1.2 Solution of the problem 403
 12.1.3 A numerical solution 405
 12.2 Fuzzy production–distribution planning in supply chain management 408
 12.2.1 State-of-the-art 409
 12.2.2 Statement of the problem 413
 12.2.3 A solution of the production–distribution problem 418
 12.2.4 Experimental investigation 422
12.3 Application of fuzzy logic to economics 431
 12.3.1 Fuzzy language in modeling of an economic agent 432
 12.3.2 Fuzzy stability 433
 12.3.3 Stability and time path planning of national economy 437
 12.3.4 Economic growth control problem 439
 12.3.5 Fuzzy nonlinear model of a manufacture dynamics 442
 12.3.6 Fuzzy approach to portfolio construction 443

12.4 Decision making in a products mix problem 445

12.5 Multi-attribute decision making for web services selection 447
 12.5.1 State-of-the-art 447
 12.5.2 Statement of the problem and its solution 448
 12.5.3 Practical example 450

12.6 Z-number modeling in psychological research 452
 12.6.1 Set of problem 452
 12.6.2 Z-modeling of educational achievement 453

12.7 Optimal port choice under Z-information 461
 12.7.1 State-of-the-art 461
 12.7.2 Decision making on port selection under Z-number-valued information 463

Bibliography 473

Index 519