Elegant SciPy

The Art of Scientific Python

Juan Nunez-Iglesias, Stéfan van der Walt, and Harriet Dashnow

Table of Contents

Pre	face	. VII
1.	Elegant NumPy: The Foundation of Scientific Python	. 1
	Introduction to the Data: What Is Gene Expression?	2
	NumPy N-Dimensional Arrays	6
	Why Use ndarrays Instead of Python Lists?	8
	Vectorization	10
	Broadcasting	10
	Exploring a Gene Expression Dataset	12
	Reading in the Data with pandas	12
	Normalization	14
	Between Samples	14
	Between Genes	21
	Normalizing Over Samples and Genes: RPKM	24
	Taking Stock	30
2.	Quantile Normalization with NumPy and SciPy	31
	Getting the Data	33
	Gene Expression Distribution Differences Between Individuals	34
	Biclustering the Counts Data	37
	Visualizing Clusters	39
	Predicting Survival	42
	Further Work: Using the TCGA's Patient Clusters	46
	Further Work: Reproducing the TCGA's clusters	46
3.	Networks of Image Regions with ndimage	49
	Images Are Just NumPy Arrays	50
	Exercise: Adding a Grid Overlay	55

	Filters in Signal Processing	56
	Filtering Images (2D Filters)	63
	Generic Filters: Arbitrary Functions of Neighborhood Values	66
	Exercise: Conway's Game of Life	67
	Exercise: Sobel Gradient Magnitude	68
	Graphs and the NetworkX library	68
	Exercise: Curve Fitting with SciPy	72
	Region Adjacency Graphs	73
	Elegant ndimage: How to Build Graphs from Image Regions	76
	Putting It All Together: Mean Color Segmentation	78
4.	Frequency and the Fast Fourier Transform	81
	Introducing Frequency	81
	Illustration: A Birdsong Spectrogram	84
	History	90
	Implementation	91
	Choosing the Length of the DFT	92
	More DFT Concepts	94
	Frequencies and Their Ordering	94
	Windowing	100
	Real-World Application: Analyzing Radar Data	105
	Signal Properties in the Frequency Domain	111
	Windowing, Applied	115
	Radar Images	117
	Further Applications of the FFT	122
	Further Reading	122
	Exercise: Image Convolution	123
5.	Contingency Tables Using Sparse Coordinate Matrices	125
	Contingency Tables	127
	Exercise: Computational Complexity of Confusion Matrices	128
	Exercise: Alternative Algorithm to Compute the Confusion Matrix	128
	Exercise: Multiclass Confusion Matrix	128
	scipy.sparse Data Formats	129
	COO Format	129
	Exercise: COO Representation	130
	Compressed Sparse Row Format	130
	Applications of Sparse Matrices: Image Transformations	133
	Exercise: Image Rotation	138
	Back to Contingency Tables	139
	Exercise: Reducing the Memory Footprint	140
	Contingency Tables in Segmentation	140

	Information Theory in Brief	142
		144
		145
		147
	Using Variation of Information	149
	Further Work: Segmentation in Practice	156
6	Linear Algebra in SciPy	157
u.	Linear Algebra Basics	157
	Laplacian Matrix of a Graph	158
	Exercise: Rotation Matrix	159
	Laplacians with Brain Data	165
	Exercise: Showing the Affinity View	170
	Exercise Challenge: Linear Algebra with Sparse Matrices	170
	PageRank: Linear Algebra for Reputation and Importance	171
	Exercise: Dealing with Dangling Nodes	176
	Exercise: Equivalence of Different Eigenvector Methods	176
	Concluding Remarks	176
7	Function Optimization in SciPy	177
,.	Optimization in SciPy: scipy.optimize	179
	An Example: Computing Optimal Image Shift	180
	Image Registration with Optimize	186
	Avoiding Local Minima with Basin Hopping	190
	Exercise: Modify the align Function	190
	"What Is Best?": Choosing the Right Objective Function	191
8.	Big Data in Little Laptop with Toolz	199
٠.	Streaming with yield	200
	Introducing the Toolz Streaming Library	203
	k-mer Counting and Error Correction	206
	Currying: The Spice of Streaming	210
	Back to Counting k-mers	212
	Exercise: PCA of Streaming Data	214
	Markov Model from a Full Genome	214
	Exercise: Online Unzip	217
Еp	Epilogue	
Ą	ppendix: Exercise Solutions	225
In	Index	