CATALYTIC PROCESSES UNDER UNSTEADY-STATE CONDITIONS

Yu. Sh. Matros
Institute of Catalysis, Siberian Branch of the Academy of Sciences of the U.S.S.R., Prospekt Akademika Lavrentieva 5, 630090 Novosibirsk 90, U.S.S.R.
TABLE OF CONTENTS

Preface IX

Chapter 1 Reaction performance in the catalyst unsteady state 1
 1.1 Unsteady state of the catalyst 1
 1.2 Ways to create the catalyst unsteady state 8
 1.3 Experimental data 12
 1.4 Optimization of the catalyst unsteady state 27
 1.4.1 An example of an efficient non-steady-state regime 28
 1.4.2 Statement of the optimization problem and ways to solve it 44
 1.4.3 Some examples of optimum performance of processes 60
 1.4.4 A non-isothermal process on a catalyst surface 71
 1.4.5 Selectivity of the catalytic process in an isothermal reactor with ideal mixing 75

References 82

Chapter 2 Dynamic properties of contact apparatus 87
 2.1 Construction and analysis of the mathematical models of reactors 87
 2.1.1 General principles 87
 2.1.2 Evaluation of the region of strong and weak influence of various parameters 92
 2.1.3 Mathematical models of the non-steady-state processes in the reactor 98
 2.1.4 Dynamic characteristics 104
 2.2 The front of an exothermic reaction in a fixed catalyst bed 105
 2.2.1 Physical aspects 106
 2.2.2 A mathematical model of the front of the chemical reaction 110
 2.2.3 Existence and unique character of the chemical reaction front 115
Chapter 5 Performance of catalytic processes in the formation and propagation of an heat wave 217
5.1 Description of various technological schemes 217
5.2 Investigation of the three-bed technological scheme "The Wings" 224
5.2.1 A mathematical model 224
5.2.2 Experimental research 230
5.3 Comparison of technological schemes realizing the cyclic non-steady-state process 233
5.4 Ammonia synthesis via "The Match" scheme 239
References 249

Chapter 6 Purification of effluent industrial gases from organic substances and carbon monoxide 251
6.1 Present-day purification techniques 251
6.2 Scheme of the gas purification process in the non-steady-state regime 255
6.3 Proving run of the non-steady-state technique for catalysed purification 258
6.4 Industrial oxide catalysts for purification of gases 264
6.5 Examples of calculation for reactors to be used for gas effluent purification in the non-steady-state regime 266
6.6 Estimation of economic efficiency of the non-steady-state method for catalytic purification 274
References 280

Chapter 7 Non-steady-state method for sulphur dioxide oxidation in sulphuric acid production 283
7.1 Initial data to develop the non-steady-state method 285
7.1.1 Kinetic model of the non-steady-state method 285
7.1.2 The kinetic model of the steady-state process 291
7.1.3 Physical characteristics 292
7.1.4 The mathematical model 293
7.1.5 Mathematical simulation 297
7.2 Experimental investigation of the non-steady-state method for sulphur dioxide oxidation 302
Chapter 8 Production of high-potency heat from slightly concentrated gases in the non-steady-state regime

8.1 The main characteristics of the non-steady-state method for heat production
 8.1.1 Theoretical basis of the method
 8.1.2 Technological and economic characteristics of the heat recovery process
8.2 Experimental investigation of the non-steady-state method for production of high-potency heat

References

Chapter 9 Ammonia, methanol and sulphur production under non-steady-state conditions

9.1 Ammonia synthesis
 9.1.1 Initial data
 9.1.2 The influence of the size of the catalyst pellets
 9.1.3 The main technological characteristics of the process
 9.1.4 The non-steady-state method for ammonia synthesis from ventilation gases
9.2 Methanol synthesis
9.3 Sulphur production by the Clauss method in the non-steady-state regime

References

Future prospects

Index

Studies in Surface Science and Catalysis (other volumes in the series)