Mathematical Models in Biology

Leah Edelstein-Keshet
University of British Columbia
Vancouver, British Columbia, Canada
Contents
Preface to the Classics Edition xv
Preface xxiii
Acknowledgments xxvii
Errata xxxi
PART I DISCRETE PROCESS IN BIOLOGY

Chapter 1 The Theory of Linear Difference Equations Applied to Population Growth 3

1.1 Biological Models Using Difference Equations 6
 Cell Division 6
 An Insect Population 7
1.2 Propagation of Annual Plants 8
 Stage 1: Statement of the Problem 8
 Stage 2: Definitions and Assumptions 9
 Stage 3: The Equations 10
 Stage 4: Condensing the Equations 10
 Stage 5: Check 11
1.3 Systems of Linear Difference Equations 12
1.4 A Linear Algebra Review 13
1.5 Will Plants Be Successful? 16
1.6 Qualitative Behavior of Solutions to Linear Difference Equations 19
1.7 The Golden Mean Revisited 22
1.8 Complex Eigenvalues in Solutions to Difference Equations 22
1.9 Related Applications to Similar Problems 25
 Problem 1: Growth of Segmental Organisms 26
 Problem 2: A Schematic Model of Red Blood Cell Production 27
 Problem 3: Ventilation Volume and Blood CO₂ Levels 27
1.10 For Further Study: Linear Difference Equations in Demography 28
 Problems 29
 References 36

Chapter 2 Nonlinear Difference Equations 39

2.1 Recognizing a Nonlinear Difference Equation 40
2.2 Steady States, Stability, and Critical Parameters 40
2.3 The Logistic Difference Equation 44
2.4 Beyond \(r = 3 \) 46
Contents

6.7 For Further Study: Vaccination Policies 254
 Eradicating a Disease 254
 Average Age of Acquiring a Disease 256

Chapter 7 Models for Molecular Events 271

7.1 Michaelis-Menten Kinetics 272
7.2 The Quasi-Steady-State Assumption 275
7.3 A Quick, Easy Derivation of Sigmoidal Kinetics 279
7.4 Cooperative Reactions and the Sigmoidal Response 280
7.5 A Molecular Model for Threshold-Governed Cellular Development 283
7.6 Species Competition in a Chemical Setting 287
7.7 A Bimolecular Switch 294
7.8 Stability of Activator-Inhibitor and Positive Feedback Systems 295
 The Activator-Inhibitor System 296
 Positive Feedback 298
7.9 Some Extensions and Suggestions for Further Study 299

Chapter 8 Limit Cycles, Oscillations, and Excitable Systems 311

8.1 Nerve Conduction, the Action Potential, and the Hodgkin-Huxley Equations 314
8.2 Fitzhugh's Analysis of the Hodgkin-Huxley Equations 323
8.3 The Poincaré-Bendixson Theory 327
8.4 The Case of the Cubic Nullclines 330
8.5 The Fitzhugh-Nagumo Model for Neural Impulses 337
8.6 The Hopf Bifurcation 341
8.7 Oscillations in Population-Based Models 346
8.8 Oscillations in Chemical Systems 352
 Criteria for Oscillations in a Chemical System 354
8.9 For Further Study: Physiological and Circadian Rhythms 360
Appendix to Chapter 8. Some Basic Topological Notions 375
Appendix to Chapter 8. More about the Poincaré-Bendixson Theory 379

PART III SPATIALLY DISTRIBUTED SYSTEMS AND PARTIAL DIFFERENTIAL EQUATION MODELS 381

Chapter 9 An Introduction to Partial Differential Equations and Diffusion in Biological Settings 383

9.1 Functions of Several Variables: A Review 385
9.2 A Quick Derivation of the Conservation Equation 393
9.3 Other Versions of the Conservation Equation 395
 Tubular Flow 395
 Flows in Two and Three Dimensions 397
9.4 Convection, Diffusion, and Attraction 403
 Convection 403
 Attraction or Repulsion 403
 Random Motion and the Diffusion Equation 404
9.5 The Diffusion Equation and Some of Its Consequences 406
9.6 Transit Times for Diffusion 410
9.7 Can Macrophages Find Bacteria by Random Motion Alone? 412
9.8 Other Observations about the Diffusion Equation 413
9.9 An Application of Diffusion to Mutagen Bioassays 416
Appendix to Chapter 9. Solutions to the One-Dimensional Diffusion Equation 426

Chapter 10 Partial Differential Equation Models in Biology 436

10.1 Population Dispersal Models Based on Diffusion 437
10.2 Random and Chemotactic Motion of Microorganisms 441
10.3 Density-Dependent Dispersal 443
10.4 Apical Growth in Branching Networks 445
10.5 Simple Solutions: Steady States and Traveling Waves 447
 Nonuniform Steady States 447
 Homogeneous (Spatially Uniform) Steady States 448
 Traveling-Wave Solutions 450
10.6 Traveling Waves in Microorganisms and in the Spread of Genes 452
 Fisher's Equation: The Spread of Genes in a Population 452
 Spreading Colonies of Microorganisms 456
 Some Perspectives and Comments 460
10.7 Transport of Biological Substances Inside the Axon 461
10.8 Conservation Laws in Other Settings: Age Distributions and the Cell Cycle 463
 The Cell Cycle 463
 Analogies with Particle Motion 466
 A Topic for Further Study: Applications to Chemotherapy 469
 Summary 469
10.9 A Do-It-Yourself Model of Tissue Culture 470
 A Statement of the Biological Problem 470
 Step 1: A Simple Case 471
 Step 2: A Slightly More Realistic Case 472
 Step 3: Writing the Equations 473
 The Final Step 475
 Discussion 476
10.10 For Further Study: Other Examples of Conservation Laws in Biological Systems 477

Chapter 11 Models for Development and Pattern Formation in Biological Systems 496

11.1 Cellular Slime Molds 498
11.2 Homogeneous Steady States and Inhomogeneous Perturbations 502
11.3 Interpreting the Aggregation Condition 506
11.4 A Chemical Basis for Morphogenesis 509
11.5 Conditions for Diffusive Instability 512
11.6 A Physical Explanation 516
11.7 Extension to Higher Dimensions and Finite Domains 520
11.8 Applications to Morphogenesis 528
11.9 For Further Study:
 Patterns in Ecology 535
 Evidence for Chemical Morphogens in Developmental Systems 537
 A Broader View of Pattern Formation in Biology 539

Selected Answers 556
Author Index 571
Subject Index 575