ADVANCES IN
QUANTUM CHEMISTRY
FROM ELECTRONIC STRUCTURE TO TIME-DEPENDENT PROCESSES:
A VOLUME IN HONOR OF GIUSEPPE DEL RE

EDITOR-IN-CHIEF
PER-OLOV LÖWDIN

PROFESSOR EMERITUS

DEPARTMENT OF QUANTUM CHEMISTRY AND QUANTUM THEORY PROJECT
UPPSALA UNIVERSITY UPPSALA UNIVERSITY
UPPSALA, SWEDEN GAINESVILLE, FLORIDA

EDITORS

JOHN R. SABIN
MICHAEL C. ZERNER

QUANTUM THEORY PROJECT
UNIVERSITY OF FLORIDA
GAINESVILLE, FLORIDA

ERKKI BRÄNDAS

DEPARTMENT OF QUANTUM CHEMISTRY
UPPSALA UNIVERSITY
UPPSALA, SWEDEN

GUEST EDITORS

ALESSANDRO LAMI

ISTITUTO DI CHIMICA QUANTISTICA ED ENERGETICA MOLECOLARE DEL CNR
PISA, ITALY

VINCENZO BARONE

DIPARTIMENTO DI CHIMICA
UNIVERSITÀ DI NAPOLI FEDERICO II
NAPLES, ITALY

VOLUME 36

ACADEMIC PRESS
San Diego London Boston New York Sydney Tokyo Toronto
Contents

Contributors xi
Preface xv
Biographic Notes xix

Half a Century of Hybridization 1
C. Barbier and Gaston Berthier
1. Introduction: A Perennial Concept 2
2. Theoretical Determination Methods of Hybrid Orbitals 5
3. Conclusion: A Multiple-Purpose Instrument 17
 References 21

Core and Valence Electrons in Atom-by-Atom Descriptions of Molecules 27
Sándor Fliszár, Edouard C. Vauthier, and Vincenzo Barone
1. Introduction 28
2. Working Formulas 30
3. Results 31
4. Conclusions and Prospects 39
 Glossary 42
 References 43

From Classical Density Functionals to Adiabatic Connection Methods: The State of the Art 45
Carlo Adamo, Andrea di Matteo, and Vincenzo Barone
1. Introduction 46
2. Theoretical Background 47
3. Applications 59
4. Conclusion 71
 References 72
Exchange-Energy Density Functionals as Linear Combinations of Homogeneous Functionals of Density
Shubin Liu, Frank De Proft, Agnes Nagy, and Robert G. Parr
1. Introduction
2. Theory: Exchange-Energy Density Functional
3. Computational Methods
4. Results and Discussion
5. Summary
References

Density Functional Computations and Mass Spectrometric Measurements. Can This Coupling Enlarge the Knowledge of Gas-Phase Chemistry?
T. Marino, N. Russo, E. Sicilia, M. Toscano, and T. Mineva
1. Introduction
2. Theoretical Background
3. Results and Discussion
4. Conclusions
References

A Recent Development of the CS INDO Model: Treatment of Solvent Effects on Structures and Optical Properties of Organic Dyes
I. Baraldi, Fabio Momicchioli, G. Ponterini, and D. Vanossi
1. Introduction
2. Electrostatic Solvent Effects within the CS INDO Scheme
3. Results and Discussion
4. Conclusions
References

Regioselectivity and Diastereoselectivity in the 1,3-Dipolar Cycloadditions of Nitrones with Acrylonitrile and Maleonitrile: The Origin of ENDO/EXO Selectivity
Augusto Rastelli, Remo Gandolfi, and Mirko Sarzi Amadè
1. Introduction
2. Experimental Results
3. Computational Methods
4. Transition Structures and Activation Parameters
5. Solvent Effects
6. Comparison with the Experimental Results
7. Origin of Endo/Exo Selectivity: Analysis of TS structures
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Method</td>
<td>324</td>
</tr>
<tr>
<td>3. Results</td>
<td>328</td>
</tr>
<tr>
<td>4. Conclusions</td>
<td>338</td>
</tr>
<tr>
<td>References</td>
<td>340</td>
</tr>
</tbody>
</table>

Hyperspherical Coordinates for Chemical Reaction Dynamics 341

Vincenzo Aquilanti, Gabriella Capecchi, and Simonetta Cavalli

1. Introduction 342
2. Separation of Radial and Angular Variables: Orbital Angular Momentum 343
3. Near Separability: Adiabatic and Diabatic Representations 344
4. Three-Body Problem: Orbital and Rotational Angular Momentum 347
5. Hyperspherical Coordinates and Harmonics: Hyperangular Momentum 350
7. Perspectives and Concluding Remarks 359
 References 360

On the Einstein–Podolsky–Rosen Paradox 365

Roy McWeeny

1. Introduction 366
2. The System Density Matrix 368
3. Reduced Density Matrices: Spin Correlation 370
4. An Example: Density Functions for the Hydrogen Molecule 373
5. Dissociation of the Hydrogen Molecule 375
6. The General Case 377
7. Conclusion 381
 References 383

Index 385