Contributors
Preface
Conference Participants
Introductory Remarks

Diatomie Molecules: Exact Solutions of HF Equations
Jacek Kobus
1. Introduction
2. FD HF Method Development
3. The Calibration of Basis Sets
4. Full CI with Numerical Orbitals
5. One-Electron Diatomic States
6. Future Developments
7. Summary
8. Acknowledgments
References

Perturbation Theory for Low-Spin Open-Shell States
Xiangzhu Li and Josef Paldus
1. Introduction
2. Basic Formalism
3. Møller-Plesset UGA Based PT
4. Epstein-Nesbet UGA Based PT
5. Applications
6. Conclusions
7. Acknowledgments
References

The Contracted Schrödinger Equation: Some Results
C. Valdemoro, L. M. Tel, and E. Pérez-Romero
1. Introduction
2. Theoretical Outline
3. RDM's Approximations
4. Computational Details
CONTENTS

Determining the Shapes of Molecular Electronic Bands from Their Intensity Distribution Moments
Dorota Bielinska-Waz and Jacek Karwowski

1. Introduction 160
2. General Theory 162
3. One-Dimensional Problems 163
4. Results 165
5. Summary 168
6. Acknowledgments 168
References 168

Convergence of Symmetry-Adapted Perturbation Theory for the Interaction between Helium Atoms and between a Hydrogen Molecule and a Helium Atom
Tatiana Korona, Robert Moszynski, Bogumil Jeziorki

1. Introduction 172
2. Method 173
3. Computational Details 177
4. Numerical Results and Discussion 178
References 186

Electron Affinity of SF₆
M. Klobukowski, G. H. F. Diercksen, and J. M. García de la Vega

1. Introduction 190
2. Calculations Using Standard Basis Sets 192
3. Development of Extended Basis Sets 194
4. Calculations with Optimized Basis Sets 197
5. Summary 199
6. Acknowledgments 200
References 200

The Oxonium Rydberg Radical: Electronic Transitions
C. Lavin and I. Martin

1. Introduction 206
2. Computational Procedure 208
3. Results and Analysis 211
4. Concluding Remarks 216
<table>
<thead>
<tr>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Acknowledgments</td>
</tr>
<tr>
<td>References</td>
</tr>
</tbody>
</table>

An ab initio Study of Four-Membered Rings. Boranes HBXYBH;
(X, Y = C, N, O)
Borislava Batandjieva, Ingrid Miadoková, and Ivan Černušák

- 1. Introduction
- 2. Computational Details
- 3. Results and Discussion
- 4. Summary
- 5. Acknowledgments

References

SiN₂ and SiN₄ Molecules: An ab Initio Study of Molecular and
Electronic Structure, Stability, and IR Activity
Rudolf Janoschek

- 1. Introduction
- 2. Computational Methods
- 3. Computational Results
- 4. Conclusions

References

A Sternheimer-like Response Property of the Bromine Molecule:
Electric Field Dependence of the Br Field Gradient
P. W. Fowler, S. A. Peebles, and A. C. Legon

- 1. Introduction
- 2. Ab Initio Calculations on Br₂
- 3. Ab Initio Calculations on H₃N⋯Br₂
- 4. The Townes-Dailey Model
- 5. An Empirical Value for the Response Tensor gzzₓ (Br)

References

Molecular Properties of Boron-Coinage Metal Dimers: BCu,
BAg, BAu
Maria Barysz and Miroslav Urban

- 1. Introduction
CONTENTS

2. Basis Sets and Computational Methods 259
3. Results and Discussion 262
4. Conclusions 269
5. Acknowledgments 270
 References 270

Decades of Theoretical Work on Protonated Hydrates
E. Kochanski, R. Kelterbaum, S. Klein, M. M. Rohmer, and A. Rahmouni

1. Introduction 274
2. Historical Evolution of Theoretical Studies on PH 274
3. Theoretical Treatments and Techniques 275
4. The Results 280
5. Conclusion 286
 References 286

Density Functional Theory: A Useful Tool for the Study of Free Radicals
Oscar N. Ventura, Martina Kieninger, and Kenneth Irving

1. Introduction 294
2. Geometrical Structure of Simple Radicals 297
3. Thermodynamics 299
4. Reactivity 301
5. Conclusions 306
6. Acknowledgments 306
 References 306

Guesses—Hunches—Formulae—Discoveries
B. G. Wybourne

1. Introduction 312
2. Spinors and the Rotation Group 312
3. Reduced Notation and the Symmetric Group 313
4. Kronecker Products for Two-Row Shapes 314
5. n-Noninteracting Particles in a Harmonic Oscillator Potential 315
6. Concluding Remarks 317
7. Acknowledgments 317
 References 317
Applying Artificial Intelligence in Physical Chemistry
F. J. Smith, M. Sullivan, J. Collis, and S. Loughlin

1. Introduction 320
2. Nature of Knowledge 321
3. Related Work 323
4. Object Oriented Knowledge Representation 323
5. Manipulation of Data 325
6. Example of AI Technique 325
7. Application to Molecular Computations 326
References 327

Artificial Intelligence Support for Computational Chemistry
Włodzisław Duch

1. Introduction 330
2. What Can AI Offer? 332
3. Feature Space Mapping 336
4. Classification of Computational Chemistry Results 339
5. Summary 342
References 342

Abstract Data Types in the Construction of Knowledge-Based Quantum Chemistry Software
P. L. Kilpatrick and N. S. Scott

1. Introduction 346
2. Abstract Data Types and Production Rules 346
3. An ADT and Its Associated Production Rule Set for a Simple Configuration Interaction Expansion Problem 350
4. Summary 358
5. Acknowledgments 359
References 359

Index 361