Bengt Nölting

Protein Folding Kinetics

Biophysical Methods

With 145 Figures and 15 Tables

Springer
Dr. Bengt Nölting
Prussian Private Institute of Technology at Berlin
Görschestraße 40
D-13187 Berlin
Germany

Cover illustration: Structure of the 10-kDa protein barstar, and structural characteristics of its microsecond folding transition state (Nölting et al., 1997a; Nölting, 1998a). Amino acid residues which have a significant Φ-value are highlighted with a ball-and-stick structure. The figure was generated using MOLSCRIPT (Kraulis, 1991), Raster3D (Bacon and Anderson, 1988; Merritt and Murphy, 1994) and the NMR structure of barstar (Lubienski et al., 1994).

Library of Congress Cataloging-in-Publication Data
Nölting, Bengt: Protein folding kinetics / Bengt Nölting.
Includes bibliographical references and index.
ISBN 3-540-65743-6
1. Protein folding. 2. Chemical kinetics. I. Title.
QD551.M59 1999 572'.633-.dc21 99-14670 CIP

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilm or in other ways, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution act under German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1999
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Product liability: The publisher cannot guarantee the accuracy of any information about dosage and application contained in this book. In every individual case the user must check such information by consulting the relevant literature.

Safety considerations: Anyone carrying out these methods will encounter pathogenic and infectious biological agents, toxic chemicals, radioactive substances, high voltage and intense light radiation which are hazardous or potentially hazardous materials or matter. It is required that these materials and matter be used in strict accordance with all local and national regulations and laws. Users must proceed with the prudence and precaution associated with good laboratory practice, under the supervision of personnel responsible for implementing laboratory safety programs at their institutions.

Production: ProduServ GmbH Verlagsservice, Berlin
Typesetting: Camera-ready by author
Cover design: design & production, Heidelberg
SPIN: 10693334 2/3020-5 4 3 2 1 0 - Printed on acid-free paper
Contents

1 Introduction ... 1

2 Structures of proteins .. 5
 2.1 Primary structure 5
 2.2 Secondary structure 9
 2.3 Tertiary structure 11

3 Physical interactions that determine the properties of proteins ... 17
 3.1 Electrostatic interactions 17
 3.1.1 Point charges 17
 3.1.2 Point charge–dipole and dipole–dipole interactions . 19
 3.2 Quantum-mechanical short-range repulsion 19
 3.3 Hydrogen bonding 21
 3.4 Hydrophobic interaction 22

4 Calculation of the kinetic rate constants 27
 4.1 Transition state theory 28
 4.2 Two-state transitions 29
 4.2.1 Reversible two-state transition 29
 4.2.2 Irreversible two-state transition 30
 4.3 Three-state transitions 31
 4.3.1 Reversible three-state transitions 31
 4.3.1.1 Reversible sequential three-state transition ... 31
 4.3.1.2 Reversible two-pathway three-state transition ... 34
 4.3.1.3 Reversible off-pathway intermediate 37
 4.3.2 Irreversible three-state transitions 38
 4.3.2.1 Irreversible consecutive three-state transition ... 38
 4.3.2.2 Irreversible parallel decay 39
 4.4 Reversible sequential four-state transition 40
 4.5 Reactions with monomer–dimer transitions 41
 4.5.1 Monomer–dimer transition 41
4.5.2 Reversible two-state folding transition linked with monomer–dimer transition 43
4.6 Kinetic rate constants for perturbation methods 44
4.7 Summary 47

5 High kinetic resolution of protein folding events 51
5.1 Ultrafast mixing 51
5.2 Temperature-jump 55
 5.2.1 Electrical-discharge-induced T-jump 55
 5.2.1.1 T-jump apparatus 55
 5.2.1.2 Observation of early folding events: Refolding from the cold-unfolded state 58
 5.2.1.3 Observation of unfolding intermediates 61
 5.2.2 LASER-induced T-jump 62
 5.2.3 Maximum time resolution in T-jump experiments 64
5.3 Optical triggers 65
 5.3.1 LASER flash photolysis 65
 5.3.2 Electron-transfer-induced refolding 69
5.4 Acoustic relaxation 69
5.5 Pressure-jump 72
5.6 Dielectric relaxation and electric-field-jump 73
5.7 NMR line broadening 75
5.8 Summary 76

6 Kinetic methods for slow reactions 79
6.1 Stopped-flow nuclear magnetic resonance (NMR) 79
6.2 Fluorescence- and isotope-labeling 80
 6.2.1 Folding reactions 80
 6.2.2 Dissociation reactions 81

7 Resolution of protein structures in solution 83
7.1 Nuclear magnetic resonance 83
7.2 Circular dichroism 89

8 High structural resolution of transient protein conformations 95
 8.1 NMR detection of H/D exchange kinetics 95
 8.2 Time-resolved circular dichroism 98
 8.3 Φ-value analysis 105
8.3.1 Protein engineering ... 107
8.3.1.1 Cassette mutagenesis .. 108
8.3.1.2 PCR mutagenesis ... 108
8.3.2 Determination of the protein stability 111
in equilibrium
8.3.3 Measurement of kinetic rate constants of folding 115
and unfolding
8.3.3.1 Two-state kinetics 116
8.3.3.2 Three-state kinetics ... 117
8.3.3.3 Kinetic implications of the occurrence of intermediates . 117
8.3.3.4 Discrimination between folding and association events . 119
8.3.4 Calculation and interpretation of Φ-values 120
8.3.4.1 Two-state transition 120
8.3.4.2 Multi-state transition 121
8.3.4.3 Residual structure in the unfolded state 123

9 Experimental problems of the kinetic and structural resolution of reactions that involve proteins 125
9.1 Protein expression problems 125
9.1.1 Low expression level 125
9.1.2 Expression errors .. 126
9.2 Aggregation ... 129
9.2.1 Detection ... 129
9.2.2 Avoidance of aggregation 131
9.3 Misfolding .. 133
9.4 Unstable curve fit .. 135

10 The folding pathway of a protein (barstar) at the resolution of individual residues from microseconds to seconds ... 137
10.1 Introduction .. 137
10.2 Materials and methods ... 138
10.3 Structure of native barstar 140
10.4 Residual structure in the cold-unfolded state 141
10.5 Gross features of the folding pathway of barstar 143
10.5.1 Equilibrium studies ... 143
10.5.2 Kinetic studies ... 145
10.6 Φ-value analysis .. 149
10.7 Inter-residue contact maps 152
10.8 The highly resolved folding pathway of barstar 155
10.8.1 Microsecond transition state 157