Free Radicals in Biology and Medicine

THIRD EDITION

Barry Halliwell
Professor of Medical Biochemistry, King’s College, London
Co-Director, International Antioxidant Research Centre
Co-Director, Neurodegenerative Disease Research Centre
Research Professor, University of California, Davis, Medical Center
Visiting Professor of Biochemistry, National University of Singapore

and

John M.C. Gutteridge
Director, Oxygen Chemistry Laboratory, Directorate of Anaesthesia and Critical Care,
Royal Brompton and Harefield NHS Trust, London
Visiting Professor, Pharmacology group, King’s College, London
Visiting Professor, Department of Biochemistry, Osaka University Medical School, Osaka

This book has been approved by the Committee of the International Society for Free Radical Research as an authoritative statement of the current state of research in this field

OXFORD UNIVERSITY PRESS
Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide in

Oxford New York
Athens Auckland Bangkok Bogotá Buenos Aires Calcutta
Cape Town Chennai Dar es Salaam Delhi Florence Hong Kong Istanbul
Karachi Kuala Lumpur Madrid Melbourne Mexico City Mumbai
Nairobi Paris São Paulo Singapore Taipei Tokyo Toronto Warsaw

with associated companies in Berlin Ibadan

Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries

Published in the United States
by Oxford University Press Inc., New York

© Barry Halliwell and John M.C. Gutteridge, 1999
The moral rights of the author have been asserted

Database right Oxford University Press (maker)

First edition published 1985
Second edition published 1989
This edition published 1999

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above

You must not circulate this book in any other binding or cover and you must impose this same condition on any acquirer

A catalogue record for this book is available from the British Library

Library of Congress Cataloging in Publication Data
(Data applied for)

ISBN 0 19 850045 9 (Hbk)
ISBN 0 19 850044 0 (Pbk)

Typeset by Newgen Imaging Systems (P) Ltd, Chennai, India
Printed by Thomson Press (India) Ltd
Contents

Plate section falls between pages 128 and 129

List of abbreviations xxix

1 Oxygen is a toxic gas—an introduction to oxygen toxicity and reactive oxygen species 1
 1.1 The history of oxygen: a major air pollutant 1
 1.2 Oxygen today 4
 1.2.1 Oxygen in water and organic solvents 4
 1.3 Oxygen and anaerobes 4
 1.3.1 Why does oxygen injure anaerobes? 6
 1.4 Oxygen and aerobes 7
 1.4.1 Oxygen transport in mammals 7
 1.4.2 Oxygen sensing 8
 1.4.3 Mitochondrial electron transport 8
 1.4.4 Bacterial electron transport chains 9
 1.5 Oxidases and oxygenases in aerobes 13
 1.5.1 Cytochromes P450 14
 1.6 Oxygen toxicity in aerobes 17
 1.6.1 Oxygen toxicity in bacteria and plants 17
 1.6.2 Oxygen toxicity in humans and other animals 18
 1.6.3 Retinopathy of prematurity 20
 1.6.4 Factors affecting oxygen toxicity 21
 1.7 What causes the toxic effects of oxygen? 22
 1.8 What is a free radical? 22
 1.9 Oxygen and its derivatives 24
 1.9.1 Singlet oxygen 25
 1.9.2 Superoxide radical 26
 1.9.3 Ozone 26
 1.10 Questions of terminology: oxygen-derived species, reactive oxygen species and oxidants 27
 1.11 Sources of superoxide in aerobes 27
 1.11.1 Enzymes 28
 1.11.2 Auto-oxidation reactions 28
 1.11.3 Haem proteins 30
 1.11.4 Mitochondrial electron transport 31
 1.11.5 Bacterial superoxide production 32
 1.11.6 Endoplasmic reticulum 32
 1.11.7 The nucleus 33
 1.11.8 Quantification 33
2 The chemistry of free radicals and related 'reactive species' 36
 2.1 Introduction 36
 2.2 How do radicals react? 36
 2.3 Radical chemistry: thermodynamics and kinetics 39
 2.3.1 Oxidation and reduction 39
 2.3.2 Reaction rates and rate constants 43
 2.3.3 Measurement of reaction rates for radical reactions 45
 2.4 Chemistry of biologically important radicals 48
 2.4.1 Transition metals 48
 2.4.2 Hydroxyl radical 55
 2.4.3 Superoxide radical 60
 2.4.4 Peroxyl and alkoxyl radicals 67
 2.4.5 Sulphur radicals 70
 2.4.6 Nitric oxide 73
 2.5 Chemistry of biologically important non-radicals 82
 2.5.1 Hydrogen peroxide 82
 2.5.2 Hypochlorous acid 84
 2.5.3 Singlet oxygen 86
 2.5.4 Peroxynitrite 95
References 100
Notes 104

3 Antioxidant defences 105
 3.1 Introduction 105
 3.1.1 What is an antioxidant? A problem of definition 106
 3.2 Antioxidant defence enzymes: superoxide dismutases 107
 3.2.1 Copper–zinc SOD 107
 3.2.2 Manganese SODs 112
 3.2.3 Iron and cambialistic SODs 115
 3.2.4 Assays of SOD 117
 3.3 Using SOD enzymes as probes for superoxide 121
 3.3.1 Are there more SODs to come? 122
 3.4 Evidence for the physiological importance of superoxide dismutases 123
 3.4.1 Gene knockouts in bacteria and yeasts 123
 3.4.2 Transgenic animals 124
 3.4.3 Induction experiments 125
 3.4.4 SOD and oxygen toxicity in animals 126
 3.5 The superoxide theory of oxygen toxicity: a critique 127
 3.5.1 Anaerobes with SOD 127
 3.5.2 Aerobes lacking SOD 128
 3.5.3 Can manganese replace SOD? 129
3.6 Why is superoxide cytotoxic?
 3.6.1 Direct damage by superoxide
 3.6.2 Cytotoxicity of superoxide-derived species
3.7 Antioxidant defence enzymes: catalases
 3.7.1 Catalase structure
 3.7.2 Catalase reaction mechanism
 3.7.3 Catalase inhibitors
 3.7.4 Peroxidatic activity of catalase
 3.7.5 Subcellular location of catalase
 3.7.6 Manganese-containing catalases
 3.7.7 Acatalasaemia
3.8 Antioxidant defence enzymes: the glutathione peroxidase family
 3.8.1 Structure of glutathione peroxidases and reductase
 3.8.2 A family of enzymes
 3.8.3 Cooperation of glutathione peroxidase and catalase in the removal of hydrogen peroxide in vivo
 3.8.4 Assessing the operation of the glutathione peroxidase system
3.9 Glutathione in metabolism
 3.9.1 Scavenging of reactive species by GSH
 3.9.2 Glutathione biosynthesis and degradation
3.10 The glutathione S-transferase superfamily
3.11 Mixed disulphides
3.12 Protein disulphide isomerase
3.13 Thioredoxin
 3.13.1 Thioredoxin and antioxidant defence
 3.13.2 Thiol-specific antioxidants
3.14 Evidence for the importance of glutathione and glutathione-metabolizing enzymes in vivo
 3.14.1 Use of inhibitors
 3.14.2 Defects in GSH metabolism
 3.14.3 Selenium deficiency in animals
 3.14.4 Human selenium deficiency
 3.14.5 Conclusion
3.15 Other sulphur-containing compounds possibly involved in antioxidant defence
 3.15.1 Trypanothione
 3.15.2 Ergothioneine
3.16 Antioxidant defence enzymes: other peroxidases
 3.16.1 Cytochrome c peroxidase: another specific peroxidase
 3.16.2 NADH peroxidase and oxidase
 3.16.3 ‘Non-specific’ peroxidases
 3.16.4 Horseradish peroxidase
 3.16.5 Peroxidases as oxidases
3.16.6 Why do plants have so much peroxidase? 168
3.16.7 Chloroperoxidase and bromoperoxidase 169
3.16.8 Ascorbate peroxidase 169
3.16.9 Peroxidase 'mimics' 170

3.17 Antioxidant defence enzymes: co-operation 170
3.17.1 The need for co-operation 170
3.17.2 Down's syndrome 171

3.18 Antioxidant defence: sequestration of metal ions 172
3.18.1 Iron metabolism 172
3.18.2 Copper metabolism 176
3.18.3 Haem proteins: potential pro-oxidants 177
3.18.4 Evidence that metal ion sequestration is important 178

3.19 Metal ion sequestration in different environments 184
3.19.1 Intracellular requirements 184
3.19.2 Metallothioneins 184
3.19.3 Phytochelatins 186
3.19.4 The extracellular environment 186

3.20 Haem oxygenase 189

3.21 Antioxidant protection by low-molecular-mass agents: compounds synthesized in vivo 191
3.21.1 Bilirubin 191
3.21.2 α-Keto acids 192
3.21.3 Sex hormones 192
3.21.4 Melatonin 192
3.21.5 Lipoic acid 194
3.21.6 Coenzyme Q 194
3.21.7 Uric acid 195
3.21.8 Histidine-containing dipeptides 198
3.21.9 Melanins 198

3.22 Antioxidant protection by low-molecular-mass agents: compounds derived from the diet 200
3.22.1 Ascorbic acid (vitamin C) 200
3.22.2 Ascorbate as an antioxidant in vivo 202
3.22.3 Is ascorbate an antioxidant in vivo? 203
3.22.4 'Recycling' of ascorbate 205
3.22.5 Pro-oxidant effects of ascorbate 206
3.22.6 Ascorbate and iron overload disease 208
3.22.7 Vitamin E 208
3.22.8 Chemistry of vitamin E 209
3.22.9 Recycling of α-tocopheryl radicals 215
3.22.10 Pro-oxidant effects of α-tocopherol 216
3.22.11 Processing of dietary vitamin E 216
3.22.12 Evidence for an antioxidant effect of α-tocopherol in vivo 217

3.23 Carotenoids: important biological antioxidants? 220
3.23.1 Carotenoid chemistry 220
3.23.2 Metabolic roles of carotenoids

3.23.3 Carotenoids as antioxidants

3.24 Plant phenols

3.24.1 Phenols in the diet

3.24.2 Are plant phenols antioxidants in vivo?

3.24.3 Herbal medicines

References

Notes

4 Oxidative stress: adaptation, damage, repair and death

4.1 Introduction

4.2 Consequences of oxidative stress: adaptation, damage or stimulation?

4.2.1 Adaptation

4.2.2 Cell injury

4.2.3 Changes in cell behaviour

4.3 Consequences of oxidative stress: cell death

4.4 Oxidative stress and calcium

4.4.1 Cell calcium metabolism

4.4.2 Dysregulation by oxidative stress

4.4.3 The mitochondrial permeability transition

4.5 Oxidative stress and transition metals

4.5.1 Iron

4.5.2 Evidence for dysregulation of iron

4.5.3 Copper

4.6 Mechanisms of damage to cellular targets by oxidative stress: DNA

4.6.1 DNA and chromatin structure

4.6.2 DNA cleavage and replication

4.6.3 Telomeres

4.6.4 Damage to DNA by ROS and RNS

4.6.5 Damage to mitochondrial and chloroplast DNA

4.6.6 Why does hydrogen peroxide lead to DNA damage?

4.6.7 Use of iron and hydrogen peroxide for DNA ‘footprinting’

4.6.8 Histidine as an extracellular pro-oxidant for DNA damage

4.7 Consequences of damage to DNA by ROS/RNS: mutation

4.8 Consequences of damage to DNA by ROS/RNS: DNA repair

4.8.1 Sanitization of the nucleotide pool

4.8.2 Repair of pyrimidine dimers

4.8.3 Excision repair

4.8.4 Repair of 8-hydroxyguanine
4.14 Are ROS/RNS important signal molecules in vivo?

4.14.1 It can occur, but does it matter?

4.15 Heat-shock and related 'stress-induced' proteins

4.15.1 Chaperones
4.15.2 The role of ubiquitin
4.15.3 Haem oxygenase as a heat-shock protein
4.15.4 Bacterial stress proteins
4.15.5 Heat-shock transcription factor

4.16 Cytokines

4.16.1 TNFα
4.16.2 Interleukins
4.16.3 The acute-phase response

4.17 Consequences of oxidative stress: cell death

4.17.1 Necrosis
4.17.2 Apoptosis
4.17.3 Genetics and mechanism of apoptosis

4.18 Summary: what is oxidative stress?

References

Notes

5 Detection of free radicals and other reactive species: trapping and fingerprinting

5.1 Introduction
5.2 ESR and spin trapping

5.2.1 Spin trapping
5.2.2 DMPO and PBN
5.2.3 Metabolism of spin traps
5.2.4 Trapping of thyl radicals

5.3 Other trapping methods, as exemplified by hydroxyl-radical trapping

5.3.1 Aromatic hydroxylation
5.3.2 The deoxyribose assay for hydroxyl radical
5.3.3 Other trapping methods for hydroxyl radical

5.4 Detection of superoxide

5.4.1 Histochemical detection

5.5 Detection of nitric oxide

5.5.1 Interference by peroxynitrite

5.5.2 Calibration

5.6 Detection of peroxynitrite

5.6.1 Nitration assays

5.7 Detection of chlorinating species

5.8 Detection of hydrogen peroxide

5.8.1 Dichlorofluorescin diacetate

5.9 Detection of singlet oxygen

5.9.1 Direct detection
5.9.2 Use of scavengers and traps
5.9.3 Deuterium oxide

5.10 Studies of ‘generalized’ light emission
(luminescence/fluorescence)

5.10.1 Luminol and lucigenin

5.11 Fingerprinting methods:
oxidative DNA damage

5.11.1 Introduction

5.11.2 Products of DNA damage

5.11.3 DNA damage in vivo

5.11.4 Measurement of oxidative DNA damage:
 basic principles

5.11.5 Measurement of guanine damage products in isolated DNA

5.11.6 DNA isolation problems

5.11.7 DNA–aldehyde adducts

5.12 Fingerprinting methods: lipid peroxidation

5.12.1 Measurement of lipid peroxidation; general principles

5.12.2 Loss of substrates

5.12.3 Measurement of peroxides

5.12.4 Diene conjugation

5.12.5 Interpretation of conjugated diene assays

5.12.6 Measurement of hydrocarbon gases

5.12.7 Light emission

5.12.8 Measurement of fluorescence

5.12.9 Parinaric acid

5.12.10 The thiobarbituric acid test

5.12.11 Urinary TBARS

5.12.12 Isoprostanes

5.12.13 Aldehydes other than MDA:
 4-hydroxy-2-trans-nonenal

5.12.14 Summary

5.13 Fingerprinting methods: protein damage by ROS and RNS

5.13.1 Reactive nitrogen species

5.13.2 Reactive chlorine species

5.13.3 Reactive oxygen species

5.13.4 The carbonyl assay

5.13.5 Can ‘total’ oxidative protein damage be measured in vivo?

5.14 Fingerprinting methods: small molecules

5.14.1 Ascorbate

5.14.2 Uric acid

5.15 Assays of total antioxidant activity

5.15.1 How useful are total antioxidant assays?

References
6 Reactive species as useful biomolecules

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>430</td>
</tr>
<tr>
<td>6.2 Radical enzymes: ribonucleotide reductase</td>
<td></td>
</tr>
<tr>
<td>6.2.1 The enzyme mechanism</td>
<td>431</td>
</tr>
<tr>
<td>6.2.2 Inhibitors of the enzyme</td>
<td>432</td>
</tr>
<tr>
<td>6.2.3 An alternative radical</td>
<td>432</td>
</tr>
<tr>
<td>6.3 Cobalamin radical enzymes</td>
<td>432</td>
</tr>
<tr>
<td>6.4 Pyruvate-metabolizing enzymes</td>
<td>434</td>
</tr>
<tr>
<td>6.5 Oxidation, carboxylation and hydroxylation reactions</td>
<td>435</td>
</tr>
<tr>
<td>6.6 Yet more useful peroxidase enzymes</td>
<td>436</td>
</tr>
<tr>
<td>6.6.1 Thyroid-hormone synthesis</td>
<td>437</td>
</tr>
<tr>
<td>6.6.2 An ‘anti-molestation’ spray</td>
<td>437</td>
</tr>
<tr>
<td>6.6.3 A fertilization membrane</td>
<td>438</td>
</tr>
<tr>
<td>6.6.4 Lignification and ligninolysis</td>
<td>439</td>
</tr>
<tr>
<td>6.6.5 Light production</td>
<td>441</td>
</tr>
<tr>
<td>6.7 Phagocytosis</td>
<td>442</td>
</tr>
<tr>
<td>6.7.1 Phagocyte recruitment and adhesion</td>
<td>446</td>
</tr>
<tr>
<td>6.7.2 The killing mechanism of phagocytes</td>
<td>448</td>
</tr>
<tr>
<td>6.7.3 Significance of extracellular ROS/RNS production by phagocytes</td>
<td>462</td>
</tr>
<tr>
<td>6.7.4 Bacterial and fungal avoidance strategies</td>
<td>465</td>
</tr>
<tr>
<td>6.8 NAD(P)H oxidases in other cell types</td>
<td>465</td>
</tr>
<tr>
<td>6.8.1 Endothelial cells</td>
<td>465</td>
</tr>
<tr>
<td>6.8.2 Lymphocytes and fibroblasts</td>
<td>466</td>
</tr>
<tr>
<td>6.8.3 Sensing of hypoxia</td>
<td>466</td>
</tr>
<tr>
<td>6.8.4 Platelets</td>
<td>466</td>
</tr>
<tr>
<td>6.8.5 Other cells</td>
<td>467</td>
</tr>
<tr>
<td>6.9 Fruit ripening and the ‘wound response’ of plant tissues</td>
<td>467</td>
</tr>
<tr>
<td>6.9.1 Lipoxygenases</td>
<td>467</td>
</tr>
<tr>
<td>6.9.2 The wound response</td>
<td>469</td>
</tr>
<tr>
<td>6.9.3 The hypersensitive response</td>
<td>470</td>
</tr>
<tr>
<td>6.10 Animal lipoxygenases and cyclooxygenases: stereospecific lipid peroxidation</td>
<td></td>
</tr>
<tr>
<td>6.10.1 Eicosanoids: prostaglandins and leukotrienes</td>
<td>471</td>
</tr>
<tr>
<td>6.10.2 Prostaglandins and thromboxanes</td>
<td>471</td>
</tr>
<tr>
<td>6.10.3 Prostaglandin structure</td>
<td>473</td>
</tr>
<tr>
<td>6.10.4 Prostaglandin synthesis</td>
<td>473</td>
</tr>
<tr>
<td>6.10.5 Regulation by ‘peroxide tone’</td>
<td>474</td>
</tr>
<tr>
<td>6.10.6 Prostacyclins and thromboxanes</td>
<td>476</td>
</tr>
<tr>
<td>6.10.7 Gene knockouts</td>
<td>477</td>
</tr>
<tr>
<td>6.10.8 Leukotrienes and other lipoxygenase products</td>
<td>478</td>
</tr>
<tr>
<td>6.10.9 Commercial PUFAs: a warning</td>
<td>481</td>
</tr>
<tr>
<td>References</td>
<td>481</td>
</tr>
<tr>
<td>Notes</td>
<td>484</td>
</tr>
</tbody>
</table>
7 Oxidative stress and antioxidant protection: some special cases

7.1 Introduction

7.2 Erythrocytes
 7.2.1 What problems do erythrocytes face?
 7.2.2 Solutions: antioxidant defence enzymes
 7.2.3 Solutions: low-molecular mass antioxidants
 7.2.4 Erythrocyte peroxidation in health and disease
 7.2.5 Glucose-6-phosphate dehydrogenase deficiency
 7.2.6 Solutions: destruction

7.3 Erythrocytes as targets for toxins
 7.3.1 Nitrite
 7.3.2 Hydrazines
 7.3.3 Sulphur-containing haemolytic drugs

7.4 Inborn defects in erythrocyte antioxidant defences: the link to malaria
 7.4.1 Favism
 7.4.2 Malaria, oxidative stress and an ancient Chinese herb

7.5 Chloroplasts
 7.5.1 Structure and genetics
 7.5.2 Trapping of light energy
 7.5.3 The splitting of water
 7.5.4 What problems do chloroplasts face?
 7.5.5 ‘Catalytic’ metal ions in plants?
 7.5.6 Solutions: antioxidant defence enzymes
 7.5.7 Ascorbate and glutathione
 7.5.8 Plant tocopherols
 7.5.9 Carotenoids
 7.5.10 The xanthophyll cycle
 7.5.11 Solutions: repair and replacement

7.6 Chloroplasts as targets for toxins
 7.6.1 Inhibition of electron transport and carotenoid synthesis
 7.6.2 Bipyridyl herbicides
 7.6.3 Air pollutants
 7.6.4 Environmental stress

7.7 The eye
 7.7.1 What problems does the eye face?
 7.7.2 Solutions
 7.7.3 The question of carotenoids

7.8 Reproduction and oxidative stress
 7.8.1 Pre-conception
 7.8.2 Post-conception
 7.8.3 Normal and premature birth

7.9 The skin
 7.9.1 Insults to the skin
 7.9.2 Inflammation
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.9.3 The solutions</td>
<td>534</td>
</tr>
<tr>
<td>7.10 Exercise: an oxidative stress?</td>
<td>534</td>
</tr>
<tr>
<td>7.10.1 Does exercise cause oxidative damage?</td>
<td>535</td>
</tr>
<tr>
<td>7.10.2 Exercise, health and free radicals</td>
<td>536</td>
</tr>
<tr>
<td>7.10.3 Muscle as a target for toxins</td>
<td>536</td>
</tr>
<tr>
<td>References</td>
<td>537</td>
</tr>
<tr>
<td>Notes</td>
<td>543</td>
</tr>
<tr>
<td>8 Free radicals, ‘reactive species’ and toxicology</td>
<td>544</td>
</tr>
<tr>
<td>8.1 Introduction</td>
<td>544</td>
</tr>
<tr>
<td>8.1.1 What is toxicology?</td>
<td>544</td>
</tr>
<tr>
<td>8.1.2 Principles of toxin metabolism</td>
<td>544</td>
</tr>
<tr>
<td>8.1.3 How can ROS/RNS contribute to toxicology?</td>
<td>546</td>
</tr>
<tr>
<td>8.2 Carbon tetrachloride</td>
<td>547</td>
</tr>
<tr>
<td>8.2.1 CCl₄ synthesis: a free-radical chain reaction</td>
<td>548</td>
</tr>
<tr>
<td>8.2.2 Toxicity of CCl₄</td>
<td>548</td>
</tr>
<tr>
<td>8.2.3 How does CCl₄ cause damage?</td>
<td>550</td>
</tr>
<tr>
<td>8.3 Other halogenated hydrocarbons</td>
<td>552</td>
</tr>
<tr>
<td>8.3.1 Chloroform and bromotrichloromethane</td>
<td>553</td>
</tr>
<tr>
<td>8.3.2 Bromoethane and bromobenzene</td>
<td>553</td>
</tr>
<tr>
<td>8.3.3 Halothane</td>
<td>554</td>
</tr>
<tr>
<td>8.3.4 Molecules similar to halothane</td>
<td>556</td>
</tr>
<tr>
<td>8.3.5 Pentachlorophenol and related environmental pollutants</td>
<td>556</td>
</tr>
<tr>
<td>8.4 Redox-cycling toxins: bipyridyl herbicides</td>
<td>557</td>
</tr>
<tr>
<td>8.4.1 Toxicity to bacteria</td>
<td>557</td>
</tr>
<tr>
<td>8.4.2 Protection by extracellular SOD</td>
<td>557</td>
</tr>
<tr>
<td>8.4.3 Toxicity to animals</td>
<td>558</td>
</tr>
<tr>
<td>8.4.4 Why is paraquat toxic to the lung?</td>
<td>559</td>
</tr>
<tr>
<td>8.4.5 Paraquat, lipid peroxidation and hydroxyl radical formation</td>
<td>560</td>
</tr>
<tr>
<td>8.5 Diabetogenic drugs</td>
<td>561</td>
</tr>
<tr>
<td>8.5.1 Alloxan</td>
<td>561</td>
</tr>
<tr>
<td>8.5.2 Streptozotocin</td>
<td>563</td>
</tr>
<tr>
<td>8.6 Redox-cycling toxins: diphenols and quinones</td>
<td>564</td>
</tr>
<tr>
<td>8.6.1 Interaction with O₂ and superoxide</td>
<td>564</td>
</tr>
<tr>
<td>8.6.2 Formation of hydroxyl radical</td>
<td>565</td>
</tr>
<tr>
<td>8.6.3 Menadione and quinone reductase (DT diaphorase)</td>
<td>566</td>
</tr>
<tr>
<td>8.6.4 Substituted dihydroxyphenylalanines and ‘manganese madness’</td>
<td>569</td>
</tr>
<tr>
<td>8.6.5 Neurotoxicity of 6-hydroxydopamine</td>
<td>570</td>
</tr>
<tr>
<td>8.6.6 Methyl-DOPA</td>
<td>570</td>
</tr>
<tr>
<td>8.6.7 Benzene and its derivatives</td>
<td>570</td>
</tr>
<tr>
<td>8.6.8 Toxic-oil syndrome</td>
<td>571</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>8.7</td>
<td>Redox-cycling agents: toxins derived from Pseudomonas aeruginosa</td>
</tr>
<tr>
<td>8.8</td>
<td>Alcohols</td>
</tr>
<tr>
<td>8.8.1</td>
<td>Ethanol</td>
</tr>
<tr>
<td>8.8.2</td>
<td>Allyl alcohol and acrolein</td>
</tr>
<tr>
<td>8.9</td>
<td>Paracetamol (acetaminophen)</td>
</tr>
<tr>
<td>8.10</td>
<td>Air pollutants</td>
</tr>
<tr>
<td>8.10.1</td>
<td>Nitrogen dioxide</td>
</tr>
<tr>
<td>8.10.2</td>
<td>Ozone</td>
</tr>
<tr>
<td>8.10.3</td>
<td>Sulphur dioxide</td>
</tr>
<tr>
<td>8.10.4</td>
<td>Mixtures</td>
</tr>
<tr>
<td>8.11</td>
<td>Toxicity of complex mixtures: cigarette smoke and other ‘toxic smokes’</td>
</tr>
<tr>
<td>8.11.1</td>
<td>Chemistry of cigarette smoke</td>
</tr>
<tr>
<td>8.11.2</td>
<td>Mechanisms of damage by cigarette smoke</td>
</tr>
<tr>
<td>8.11.3</td>
<td>Lung defences against cigarette smoke</td>
</tr>
<tr>
<td>8.11.4</td>
<td>Adaptation</td>
</tr>
<tr>
<td>8.11.5</td>
<td>Other tobacco usage</td>
</tr>
<tr>
<td>8.11.6</td>
<td>Fire smoke</td>
</tr>
<tr>
<td>8.11.7</td>
<td>Diesel exhaust</td>
</tr>
<tr>
<td>8.12</td>
<td>Toxicity of metals</td>
</tr>
<tr>
<td>8.12.1</td>
<td>Cause or consequence?</td>
</tr>
<tr>
<td>8.12.2</td>
<td>Titanium</td>
</tr>
<tr>
<td>8.12.3</td>
<td>Aluminium</td>
</tr>
<tr>
<td>8.12.4</td>
<td>Lead</td>
</tr>
<tr>
<td>8.12.5</td>
<td>Vanadium</td>
</tr>
<tr>
<td>8.12.6</td>
<td>Molybdenum</td>
</tr>
<tr>
<td>8.12.7</td>
<td>Chromium</td>
</tr>
<tr>
<td>8.12.8</td>
<td>Nickel</td>
</tr>
<tr>
<td>8.12.9</td>
<td>Cobalt</td>
</tr>
<tr>
<td>8.12.10</td>
<td>Mercury</td>
</tr>
<tr>
<td>8.12.11</td>
<td>Cadmium</td>
</tr>
<tr>
<td>8.12.12</td>
<td>Arsenic</td>
</tr>
<tr>
<td>8.13</td>
<td>Antibiotics</td>
</tr>
<tr>
<td>8.13.1</td>
<td>Peroxidation of antibiotics</td>
</tr>
<tr>
<td>8.13.2</td>
<td>Tetracyclines as pro- and anti-oxidants</td>
</tr>
<tr>
<td>8.13.3</td>
<td>Quinone antibiotics</td>
</tr>
<tr>
<td>8.13.4</td>
<td>Aminoglycoside nephrotoxicity and ototoxicity</td>
</tr>
<tr>
<td>8.14</td>
<td>Nitro and azo compounds</td>
</tr>
<tr>
<td>8.14.1</td>
<td>Nitro radicals and redox cycling</td>
</tr>
<tr>
<td>8.14.2</td>
<td>Further reduction of nitro radicals</td>
</tr>
<tr>
<td>8.14.3</td>
<td>Cocaine teratogenicity</td>
</tr>
<tr>
<td>8.14.4</td>
<td>Azo compounds</td>
</tr>
<tr>
<td>8.15</td>
<td>3-Methylindole</td>
</tr>
<tr>
<td>8.16</td>
<td>Radiation damage</td>
</tr>
<tr>
<td>8.16.1</td>
<td>The oxygen effect</td>
</tr>
</tbody>
</table>
9 Free radicals, other reactive species and disease

9.1 Introduction

9.1.1 Origin of oxidative stress in disease 619
9.1.2 Consequences of oxidative stress in disease 621
9.1.3 Significance of oxidative stress in disease 623

9.2 Atherosclerosis

9.2.1 Nature of atherosclerosis 625
9.2.2 The link to fat 625
9.2.3 What initiates atherosclerosis? 626
9.2.4 What roles are played by ROS/RNS in atherosclerosis? 627
9.2.5 Evidence relating to the ‘oxidation theory’ of atherosclerosis 630
9.2.6 Chemistry of LDL oxidation 631
9.2.7 Antioxidants and LDL oxidation 634
9.2.8 The role of high-density lipoproteins 637
9.2.9 Conclusion 638

9.3 Hypertension 638

9.4 Diabetes

9.4.1 Oxidative stress and the origins of diabetes 639
9.4.2 Oxidative stress in diabetic patients 640
9.4.3 Mechanisms of glucose toxicity: aldose reductase 641
9.4.4 Non-enzymatic glycation and glycoxidation 641
9.4.5 How important is oxidative stress in diabetes? 645

9.5 Ischaemia–reperfusion

9.5.1 Consequences of hypoxia 646
9.5.2 Reoxygenation injury 646
9.5.3 Adaptation to hypoxia: the role of transcription factors 648
9.5.4 Intestinal ischaemia–reoxygenation 648
9.5.5 Cardiac ischaemia–reoxygenation 649
9.5.6 Ischaemic preconditioning 654
9.5.7 Shock-related ischaemia–reoxygenation 655
9.5.8 Birth trauma 655
9.5.9 Kidney damage 656
9.5.10 Liver transplantation 658
9.5.11 Organ preservation fluids 658
9.5.12 The eye 659
9.5.13 Limbs, digits, and sex organs 659
9.5.14 Plants 660
Contents

9.5.15 Chemical ischaemia–reoxygenation: carbon monoxide poisoning 660
9.5.16 Freezing injury 660
9.6 Chronic inflammatory diseases: an introduction 661
 9.6.1 Anti-inflammatory effects of antioxidants 661
 9.6.2 Tissue damage by inflammation 662
 9.6.3 Are ROS/RNS important mediators of autoimmune diseases? 663
 9.6.4 Clastogenic factors 663
 9.6.5 Antiphospholipid antibodies 664
 9.6.6 Artefacts of sample storage: a cautionary note 664
9.7 Rheumatoid arthritis 664
 9.7.1 The normal joint 665
 9.7.2 The RA joint 665
 9.7.3 Oxidative damage in RA 666
 9.7.4 Sources of ROS/RNS in RA 667
 9.7.5 Consequences of oxidative damage in RA 674
 9.7.6 Iron and rheumatoid arthritis 675
 9.7.7 Alkaptonuria 677
9.8 Inflammatory bowel disease 677
 9.8.1 The salazines 678
9.9 Other chronic inflammations 678
 9.9.1 The pancreas 678
 9.9.2 Other parts of the gastro-intestinal tract 679
9.10 Lung damage and the adult respiratory distress syndrome 679
 9.10.1 Oxygen and the lung 679
 9.10.2 Phagocytes and adult respiratory distress syndrome 680
 9.10.3 Oxidative stress and ARDS 681
 9.10.4 Lung transplantation 684
 9.10.5 Asthma 684
9.11 Cystic fibrosis 685
 9.11.1 Cystic fibrosis and carotenoids 686
9.12 Oxidative stress and cancer: a complex relationship 687
 9.12.1 The cell cycle 687
 9.12.2 Tumours 688
 9.12.3 Carcinogenesis 689
 9.12.4 Oncogenes 691
 9.12.5 Tumour-suppressor genes 694
 9.12.6 ROS/RNS and carcinogenesis 694
 9.12.7 Changes in antioxidant defences in cancer 699
 9.12.8 Transition metals and cancer 700
9.13 Carcinogens: oxygen and others 701
 9.13.1 Carcinogen metabolism 702
 9.13.2 Benzpyrene 705
 9.13.3 Detoxification of carcinogens 705
 9.13.4 Carcinogens and oxidative DNA damage 706
9.13.5 Peroxisome proliferators 706
9.13.6 Reactive nitrogen species 707

9.14 Cancer chemotherapy 710
9.14.1 Natural products in chemotherapy 710
9.14.2 Bleomycin 711
9.14.3 Quinone antitumour agents 715
9.14.4 Protein antitumour drugs 720
9.14.5 Resistance to cancer chemotherapy 721

9.15 Oxidative stress and disorders of the nervous system: general principles 721
9.15.1 Introduction 721
9.15.2 Energy metabolism 722
9.15.3 Calcium and nitric oxide 723
9.15.4 Excitotoxicity 725
9.15.5 Why should the brain be prone to oxidative stress? 726
9.15.6 Consequences of oxidative stress 729
9.15.7 Antioxidant defences in the brain 731

9.16 Oxidative stress and ischaemic or traumatic brain injury 733
9.16.1 Definition of terms 733
9.16.2 Mediators of damage 734
9.16.3 Therapeutic interventions 735
9.16.4 Traumatic injury 735

9.17 Oxidative stress in Parkinson’s disease 736
9.17.1 Pathology of the disease 736
9.17.2 Treatment 737
9.17.3 What is the cause of PD? 738
9.17.4 Oxidative stress and mitochondrial defects in PD 740
9.17.5 Distinguishing cause from consequence 740

9.18 Oxidative stress in Alzheimer’s disease 744
9.18.1 Pathology of the disease 744
9.18.2 The nature of amyloid in AD 746
9.18.3 Genetics of AD 748
9.18.4 Mechanisms of plaque toxicity 749
9.18.5 Aluminium in Alzheimer’s disease 750

9.19 Amyotrophic lateral sclerosis 751
9.19.1 ALS and superoxide dismutase 751
9.19.2 Mechanisms of SOD toxicity 752
9.19.3 Oxidative damage in ALS 754

9.20 Other neurodegenerative diseases 755
9.20.1 Down’s syndrome 755
9.20.2 Multiple sclerosis 755
9.20.3 Neuronal ceroid lipofuscinoses 756
9.20.4 Huntington’s disease 757
9.20.5 Friedreich’s ataxia 758
9.20.6 Tardive dyskinesia 759
9.20.7 Prion diseases 759
10.5 Antioxidants and the treatment of disease
 10.5.1 Therapeutic antioxidants
 10.5.2 Approaches to antioxidant characterization
 10.5.3 Superoxide dismutase
 10.5.4 Mimics of SOD
 10.5.5 Spin traps
 10.5.6 Vitamins C and E and their derivatives
 10.5.7 Other chain-breaking antioxidants: probucol and ubiquinol
 10.5.8 BHA, BHT and plant phenolics
 10.5.9 The lazaroids
 10.5.10 Thiol compounds
 10.5.11 Glutathione peroxidase ‘mimics’

10.6 Iron chelators
 10.6.1 Desferrioxamine
 10.6.2 Other iron-chelating agents

10.7 Inhibitors of ROS/RNS generation
 10.7.1 Xanthine oxidase inhibitors
 10.7.2 Inhibitors of ROS generation by phagocytes
 10.7.3 Inhibitors of nitric oxide synthase

References

Notes

Appendix I Some basic chemistry for the life scientist
 A1.1 Atomic structure
 A1.2 Bonding between atoms
 A1.2.1 Ionic bonding
 A1.2.2 Covalent bonding
 A1.2.3 Non-ideal character of bonds
 A1.2.4 Hydrocarbons and electron delocalization
 A1.3 Moles and molarity
 A1.4 pH and pK_a
 A1.5 Some useful data

Appendix II Some basic molecular biology for the chemist
 A2.1 Introduction
 A2.2 Transcription and editing
 A2.3 Translation
 A2.4 Regulation of transcription
 A2.5 Structure and regulation of transcription factors
 A2.5.1 Zinc fingers
 A2.5.2 Leucine zippers
 A2.6 Cell growth signals, kinases and immediate early genes
Contents

A2.7 Identifying DNA-binding proteins in the laboratory 887
A2.8 Reverse transcription 888
A2.9 Studying the genome 888
A2.10 Recombinant DNA technology 890
A2.11 Libraries 891
A2.12 Polymerase chain reaction 892
A2.13 Gene expression in mammalian cells 892
A2.14 Antisense technology 894
A2.15 Transgenic organisms 894
References 897

Index 899