The Theory of Intermolecular Forces

A. J. STONE

Department of Chemistry
University of Cambridge

CLARENDON PRESS • OXFORD
Oxford is a trade mark of Oxford University Press

Published in the United States
by Oxford University Press Inc., New York

© Anthony J. Stone, 1996
First published 1996
First published in paperback 1997

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, without the prior permission in writing of Oxford
University Press. Within the UK, exceptions are allowed in respect of any
fair dealing for the purpose of research or private study, or criticism or
review, as permitted under the Copyright, Designs and Patents Act, 1988, or
in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning
reproduction outside those terms and in other countries should be sent to
the Rights Department, Oxford University Press, at the address above.

This book is sold subject to the condition that it shall not,
by way of trade or otherwise, be lent, re-sold, hired out, or otherwise
circulated without the publisher’s prior consent in any form of binding
or cover other than that in which it is published and without a similar
condition including this condition being imposed
on the subsequent purchaser.

A catalogue record for this book is available from the British Library

Library of Congress Cataloging in Publication Data
(Data available)

ISBN 0 19 855884 8 (Hbk)
ISBN 0 19 855883 X (Pbk)

Typeset by the author

Printed in Great Britain by
Bookcraft (Bath) Ltd.
Midsomer Norton, Somerset
A. J. S.

CONTENTS

1 Introduction
 1.1 The evidence for intermolecular forces
 1.1.1 Magnitudes
 2
 1.2 Classification of intermolecular forces
 4
 1.3 Potential energy surfaces
 5
 1.4 Coordinate systems
 7
 1.4.1 Internal coordinates
 10

2 Molecules in Electrostatic Fields
 2.1 Molecular properties: multipole moments
 12
 2.1.1 Cartesian definition
 12
 2.1.2 Spherical tensor definition
 17
 2.2 The energy of a molecule in a non-uniform electric field
 18
 2.3 Polarizabilities
 21
 2.3.1 Units and magnitudes
 24
 2.4 Hyperpolarizabilities
 25
 2.5 The response to oscillating electric fields
 26
 2.6 Symmetry properties of the multipole moments and polarizabilities
 28
 2.7 Change of origin
 32

3 Electrostatic Interactions between Molecules
 3.1 The electric field of a molecule
 36
 3.2 Electrostatic interaction between molecules
 38
 3.2.1 Explicit formulæ
 39
 3.3 Spherical tensor formulation
 41
 3.4 Examples
 45
 3.4.1 The dipole–dipole interaction
 45
 3.4.2 The quadrupole–quadrupole interaction
 45
 3.4.3 Competition between electrostatic terms
 48

4 Perturbation Theory of Intermolecular Forces at Long Range
 4.1 Introduction
 50
 4.2 The induction energy
 53
 4.2.1 Non-additivity of the induction energy
 54
 4.2.2 Multipole expansion of the induction energy
 55
 4.3 The dispersion energy
 56
 4.3.1 Drude model
 56
 4.3.2 Quantum-mechanical formulation
 58
CONTENTS

4.3.3 Spherical tensor formulation 61
4.3.4 Numerical values 62

5 Ab Initio Methods 64
5.1 Introduction 64
5.2 Basis sets 65
5.3 The supermolecule method 67
5.4 Electron correlation and intermolecular interactions 67
5.5 The variation principle 68
5.5.1 Basis set superposition error 70
5.6 Electron correlation and size consistency 72
5.7 Density functional theory 74
5.8 Semi-empirical methods 75
5.9 Choice of geometries 76
5.10 Morokuma analysis 76

6 Perturbation Theory of Intermolecular Forces at Short Range 79
6.1 Introduction 79
6.1.1 Short-range perturbation theory 82
6.2 Symmetric perturbation methods 85
6.2.1 Expansion in powers of overlap 85
6.2.2 Orthogonalization of the antisymmetrized-product basis 86
6.2.3 Non-hermitian zeroth-order Hamiltonian 86
6.2.4 Biorthogonal functions 88
6.2.5 Non-orthogonal perturbation theory 88
6.2.6 Expansion in orders of exchange 89
6.3 Symmetry-adapted perturbation theories 90
6.3.1 Iterative symmetry-forcing procedures 90
6.3.2 The treatment of electron correlation 93
6.4 The first-order energy at short range 94
6.4.1 The electrostatic energy at short range: penetration 94
6.4.2 The exchange–repulsion energy 96
6.5 The second-order energy at short range 96
6.5.1 Damping functions 100
6.6 Charge transfer and basis set superposition error 102

7 Distributed Multipole Expansions 105
7.1 Convergence of the multipole expansion 105
7.2 Distributed multipole expansions 106
7.2.1 Empirical models 107
7.3 Distributed multipole analysis 107
7.3.1 Allocation algorithms for distributed multipole analysis 109
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4</td>
<td>Other distributed-multipole methods</td>
<td>111</td>
</tr>
<tr>
<td>7.5</td>
<td>Examples</td>
<td>112</td>
</tr>
<tr>
<td>7.6</td>
<td>The hydrogen bond</td>
<td>115</td>
</tr>
<tr>
<td>7.6.1</td>
<td>The Buckingham–Fowler model</td>
<td>116</td>
</tr>
<tr>
<td>7.6.2</td>
<td>Other contributions to the energy of the hydrogen bond</td>
<td>117</td>
</tr>
<tr>
<td>7.7</td>
<td>Point-charge models</td>
<td>119</td>
</tr>
<tr>
<td>8</td>
<td>Distributed Polarizabilities</td>
<td>124</td>
</tr>
<tr>
<td>8.1</td>
<td>The Applequist model</td>
<td>126</td>
</tr>
<tr>
<td>8.2</td>
<td>Distributed polarizabilities</td>
<td>131</td>
</tr>
<tr>
<td>8.3</td>
<td>The induction energy in a distributed polarizability description</td>
<td>134</td>
</tr>
<tr>
<td>8.4</td>
<td>Computation of distributed polarizabilities</td>
<td>137</td>
</tr>
<tr>
<td>8.5</td>
<td>Karlström polarizabilities</td>
<td>138</td>
</tr>
<tr>
<td>8.6</td>
<td>Localized polarizabilities</td>
<td>139</td>
</tr>
<tr>
<td>8.7</td>
<td>Distributed dispersion interactions</td>
<td>140</td>
</tr>
<tr>
<td>9</td>
<td>Many-body Effects</td>
<td>141</td>
</tr>
<tr>
<td>9.1</td>
<td>Non-additivity of the induction energy</td>
<td>141</td>
</tr>
<tr>
<td>9.2</td>
<td>Many-body terms in the dispersion energy</td>
<td>144</td>
</tr>
<tr>
<td>9.3</td>
<td>Many-body terms in the repulsion energy</td>
<td>146</td>
</tr>
<tr>
<td>9.4</td>
<td>Other many-body effects</td>
<td>146</td>
</tr>
<tr>
<td>9.5</td>
<td>Intermolecular forces in a medium</td>
<td>147</td>
</tr>
<tr>
<td>10</td>
<td>Interactions Involving Excited States</td>
<td>149</td>
</tr>
<tr>
<td>10.1</td>
<td>Resonance interactions and excitons</td>
<td>149</td>
</tr>
<tr>
<td>10.1.1</td>
<td>Excitons</td>
<td>151</td>
</tr>
<tr>
<td>10.1.2</td>
<td>Excimers</td>
<td>152</td>
</tr>
<tr>
<td>10.2</td>
<td>Distributed transition moments</td>
<td>152</td>
</tr>
<tr>
<td>11</td>
<td>Practical Models for Intermolecular Potentials</td>
<td>155</td>
</tr>
<tr>
<td>11.1</td>
<td>Potentials for atoms</td>
<td>156</td>
</tr>
<tr>
<td>11.1.1</td>
<td>Hard-sphere atoms</td>
<td>156</td>
</tr>
<tr>
<td>11.1.2</td>
<td>Lennard-Jones potentials</td>
<td>157</td>
</tr>
<tr>
<td>11.1.3</td>
<td>Born–Mayer potential</td>
<td>157</td>
</tr>
<tr>
<td>11.1.4</td>
<td>Accurate potentials for atoms</td>
<td>158</td>
</tr>
<tr>
<td>11.1.5</td>
<td>Dispersion</td>
<td>159</td>
</tr>
<tr>
<td>11.1.6</td>
<td>Repulsion</td>
<td>161</td>
</tr>
<tr>
<td>11.2</td>
<td>Induction</td>
<td>162</td>
</tr>
<tr>
<td>11.3</td>
<td>Model potentials for small molecules</td>
<td>163</td>
</tr>
<tr>
<td>11.3.1</td>
<td>Molecule–molecule potentials</td>
<td>163</td>
</tr>
<tr>
<td>11.3.2</td>
<td>Atom-atom and site-site potentials</td>
<td>164</td>
</tr>
<tr>
<td>11.3.3</td>
<td>Approximate methods for determining repulsive potentials</td>
<td>168</td>
</tr>
<tr>
<td>11.3.4</td>
<td>Dispersion</td>
<td>171</td>
</tr>
<tr>
<td>11.4</td>
<td>Dependence on internal coordinates</td>
<td>172</td>
</tr>
<tr>
<td>11.5</td>
<td>Molecular mechanics</td>
<td>172</td>
</tr>
</tbody>
</table>
11.5.1 Conformational dependence of potential parameters 174
11.6 A case study: potentials for water 175
11.7 Calculation of energy derivatives 178
 11.7.1 Derivatives of the electrostatic energy 178
 11.7.2 Second derivatives 180
 11.7.3 Repulsion and dispersion 181
 11.7.4 Induction 183

12 Sources of Experimental Data 185
12.1 Properties of individual molecules 185
 12.1.1 Multipole moments 185
 12.1.2 Polarizabilities 187
12.2 Experimental determination of intermolecular potentials from
 bulk properties 189
 12.2.1 The virial coefficient 189
 12.2.2 Transport coefficients 191
12.3 Spectroscopic methods 192
 12.3.1 Rotational Rydberg–Klein–Rees method 193
 12.3.2 Expansion in an angular basis 194
 12.3.3 Discrete variable representation 197
 12.3.4 Diffusion Monte Carlo 198
12.4 Molecular beam scattering 200
12.5 Measurements on liquids and solids 204
 12.5.1 Crystals 204
 12.5.2 Neutron and X-ray scattering 205
12.6 Simulation methods 205

Appendices

A Cartesian Tensors 208
A.1 Basic definitions 208
 A.1.1 Isotropic tensors 210
 A.1.2 Polar and axial tensors 210

B Spherical Tensors 212
B.1 Spherical harmonics 212
B.2 Rotations of the coordinate system 214
B.3 Spherical tensors 215
B.4 Coupling of wavefunctions and spherical tensors 216
 B.4.1 Wigner 3j symbols 217

C Introduction to Perturbation Theory 218
C.1 Non-degenerate perturbation theory 218
 C.1.1 Rayleigh–Schrödinger perturbation theory 219
 C.1.2 Unsöld’s average-energy approximation 220
C.2 The resolvent 221
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.3 Degenerate perturbation theory</td>
<td>221</td>
</tr>
<tr>
<td>C.4 Time-dependent perturbation theory</td>
<td>223</td>
</tr>
<tr>
<td>D Conversion Factors</td>
<td></td>
</tr>
<tr>
<td>D.1 Multipole moments</td>
<td>225</td>
</tr>
<tr>
<td>D.2 Polarizabilities</td>
<td>226</td>
</tr>
<tr>
<td>D.3 The C₆ coefficient</td>
<td>226</td>
</tr>
<tr>
<td>E Cartesian–Spherical Conversion Tables</td>
<td>227</td>
</tr>
<tr>
<td>F Interaction Functions</td>
<td>232</td>
</tr>
</tbody>
</table>

References 241

Index 257