The Chaperonins

Edited by

R. John Ellis
Department of Biological Sciences
University of Warwick
Coventry, United Kingdom

ACADEMIC PRESS
San Diego New York Boston London Sydney Tokyo Toronto

This book is printed on acid-free paper.

Copyright © 1996 by ACADEMIC PRESS, INC.

All Rights Reserved.
No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher.

Academic Press, Inc.
A Division of Harcourt Brace & Company
525 B Street, Suite 1900, San Diego, California 92101-4495

United Kingdom Edition published by
Academic Press Limited
24-28 Oval Road, London NW1 7DX

Library of Congress Cataloging-in-Publication Data
The chaperonins / edited by R. John Ellis.
p. cm. -- (Cell biology series)
Includes index.
ISBN 0-12-237455-X (case: alc. paper)
. II. Series.
QP552.M64C48 1996
574.19'245--dc20 95-44810
CIP

PRINTED IN THE UNITED STATES OF AMERICA
96 97 98 99 00 01 EB 9 8 7 6 5 4 3 2 1
Contents

Contributors ... xi
Preface ... xiii

1 Chaperonins: Introductory Perspective
 R. John Ellis
 I. Origins ... 2
 II. General Concept of Molecular Chaperones 8
 III. Definitions and Nomenclature 12
 IV. Functions of Chaperonins 15
 V. Problems .. 17
 References ... 23

2 Evolutionary Relationships of Chaperonins
 Radhey S. Gupta
 I. Introduction .. 27
 II. Chaperonin 60 and Chaperonin 10 Gene Families 28
 III. t-Complex Polypeptide 1 Gene Family 47
 IV. Evolutionary Relationship of t-Complex Polypeptide 1 and Chaperonin 60
 Gene Families and Origin of Eukaryotic Cells 52
 References ... 57

3 Chaperonins of Photosynthetic Organisms
 Anthony A. Gatenby
 I. Introduction .. 65
 II. Chloroplast Chaperonins ... 68
 III. Chaperonin 60 and Chaperonin 10 in Mitochondria from Angiosperms 79
 IV. Chaperonin 60 and Chaperonin 10 in Photosynthetic Prokaryotic
 Organisms ... 81
 V. Concluding Comments ... 83
 References ... 85
4 Chaperonin-Mediated Folding and Assembly of Proteins in Mitochondria

Thomas Langer and Walter Neupert

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>91</td>
</tr>
<tr>
<td>II. Mitochondrial Chaperonin 60</td>
<td>93</td>
</tr>
<tr>
<td>III. Mitochondrial Chaperonin 60 as Stress Protein</td>
<td>96</td>
</tr>
<tr>
<td>IV. Regulation of Mitochondrial Chaperonin 60 Function by Mitochondrial Chaperonin 10</td>
<td>97</td>
</tr>
<tr>
<td>V. Role of Mitochondrial Chaperonin 60 Machinery in Intramitochondrial Protein Sorting</td>
<td>99</td>
</tr>
<tr>
<td>VI. Cooperation of Mitochondrial Chaperonin 60 with Mitochondrial Heat Shock Protein 70 Machinery</td>
<td>100</td>
</tr>
<tr>
<td>VII. Perspectives</td>
<td>102</td>
</tr>
<tr>
<td>References</td>
<td>103</td>
</tr>
</tbody>
</table>

5 Structure and Function of Chaperonins in Archaebacteria and Eukaryotic Cytosol

Keith R. Willison and Arthur L. Horwich

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>108</td>
</tr>
<tr>
<td>II. Archaebacterial Chaperonins</td>
<td>110</td>
</tr>
<tr>
<td>III. r-Complex Polypeptide 1 in Eukaryotic Cytosol</td>
<td>113</td>
</tr>
<tr>
<td>IV. CCT Analysis in Yeast</td>
<td>125</td>
</tr>
<tr>
<td>V. Evolution</td>
<td>127</td>
</tr>
<tr>
<td>VI. Conclusions</td>
<td>130</td>
</tr>
<tr>
<td>References</td>
<td>131</td>
</tr>
</tbody>
</table>

6 Regulation of Chaperonin Gene Expression

Saskia M. van der Vies and Costa Georgopoulos

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>137</td>
</tr>
<tr>
<td>II. Chaperonin Gene Organization</td>
<td>138</td>
</tr>
<tr>
<td>III. Induction of Chaperonin Synthesis in Response to Stress</td>
<td>143</td>
</tr>
<tr>
<td>IV. Regulation of Escherichia coli Chaperonin Genes</td>
<td>144</td>
</tr>
<tr>
<td>V. Regulation of Chaperonin Genes in Other Bacteria, Including Gram-Positive Bacteria</td>
<td>150</td>
</tr>
<tr>
<td>VI. Modulation of Chaperonin Activity by Bacteriophage Gp31 Protein</td>
<td>158</td>
</tr>
<tr>
<td>VII. Concluding Remarks</td>
<td>159</td>
</tr>
<tr>
<td>References</td>
<td>160</td>
</tr>
</tbody>
</table>
7 Kinetic and Energetic Aspects of Chaperonin Function
Anthony R. Clarke and Peter A. Lund

I. Ground Rules of Chaperonin Behavior .. 168
II. Avoidance of Dead Ends ... 180
III. Spontaneous Protein Folding .. 182
IV. Energy Transduction: Role of ATP in Chaperonin Activity 184
V. Conformation of Bound Protein Substrates 195
VI. General Models of Chaperonin Action .. 200
 References ... 208

8 Role of Prokaryotic Chaperonins in Protein Folding
Jörg Martin, Mark Mayhew, and F.-Ulrich Hartl

I. Introduction ... 213
II. Pathway of Chaperone-Assisted Protein Folding 217
III. Mechanism of Chaperonin-Mediated Protein Folding 221
IV. Conformational Properties of Chaperonin-Bound Proteins 229
V. Role of Chaperonins in Oligomeric Protein Assembly 233
VI. Chaperonin Function under Cellular Stress Conditions 234
VII. Concluding Remarks ... 237
 References ... 237

9 Chaperonin Structure and Conformational Changes
Helen R. Saibil

I. Introduction: Methods for Structural Studies of Chaperonins 246
II. Arrangement of Subunit Domains in Chaperonin 60 Oligomer 249
III. Crystal Structures of GroEL and GroES 252
IV. Conformational Changes in GroEL and Its Complexes Studied by Cryo-electron Microscopy ... 257
V. Molecular Basis of Chaperonin Function 261
 References ... 263

10 Immunological Aspects of Chaperonins
Anthony R. M. Coates

I. Innate Immunity: Direct Effect of Chaperonins on Phagocytes 268
II. Adaptive Immunity: Nature of Immune Response to Chaperonins 273
III. Significance of Immune Response ... 282
IV. Conclusion ... 288
 References ... 289

Index .. 297