Ion Channels
A Practical Approach

Edited by
R. H. ASHLEY
Department of Biochemistry, University of Edinburgh,
George Square, Edinburgh EH8 9XD, UK
Contents

List of contributors xvi
Abbreviations xix

1. Patch-clamp recording 1
 Alasdair J. Gibb
 1. Introduction 1
 2. Principles 1
 Electrical considerations 1
 The nature of the glass–membrane seal 2
 Connecting the membrane patch to the electronics 4
 Solutions for patch clamping 5
 3. Patch-clamp recording configurations 5
 Basic sealing procedure 5
 Notes on the sealing procedure 6
 Cell-attached patch configuration 7
 Inside-out patch configuration 7
 Whole-cell recording configuration 8
 Perforated patch whole-cell recording 12
 Outside-out patch configuration 13
 Patch-clamp recording conventions 14
 4. Making patch pipettes 15
 Patch pipette glass 15
 Patch pipette pulling procedure 17
 Coating with Sylgard 18
 Pipette fire-polishing 19
 5. Building a patch-clamp set-up 20
 Patch-clamp amplifiers 20
 Patch-clamp amplifier headstages 21
 Oscilloscopes 22
 Amplifiers and filters 23
 Tape recorders and data storage 24
 Computers and on-line experimental control, data storage, and analysis 25
 Vibration isolation system 25
 Microscopes 26
 Micromanipulators 27
 Grounding and shielding the patch-clamp set-up 27
2. The measurement of the function of ion channels reconstituted into artificial membranes

Alan J. Williams

1. Introduction

2. The production of artificial phospholipid bilayers
 Bilayers formed by spreading phospholipid dispersions (painted bilayers)
 Bilayers formed from monolayers (folded bilayers and bilayers on patch pipettes)

3. Ion channel insertion into bilayers
 Channel insertion by vesicle fusion
 Channel orientation in the bilayer

4. Patch clamping channels in liposomes
 Freeze-thaw
 Dehydration–rehydration
 Patch clamping large liposomes

5. Monitoring current flow through ion channels
 Electronics
 Noise

6. General hints
 Cleaning the apparatus
 Solutions
 Changing solutions
 Agar bridges and silver–silver chloride electrodes

Acknowledgements

References
3. Concepts of single-channel analysis: inferring function from fluctuations

Guy W. J. Moss and Edward Moczydlowski

1. Introduction
 Single channels in practice and theory
 Basic considerations for recording and analysing data

2. Measurement of ionic selectivity
 What is selectivity?
 Continuum versus discrete-state models
 Classical definition of a permeability ratio

3. The rate-theory perspective on ion conduction
 A one-site channel compared to a one-site enzyme
 Multi-ion channels and ion-ion interactions

4. Probability distributions used to describe single-channel activity

5. Analysis of channel gating according to the Q-matrix formulation
 Channel gating can be described by a Markov process
 The probabilistic nature of ion channel gating
 Conditional probabilities and transition rates
 Derivation of the Q-matrix
 Relationship between conditional and macroscopic probability equations
 Eigenvalues and probability density functions of the Q-matrix
 Q-matrix analysis of a three-state scheme

Appendix 1: Alternative calculation of A_i
Appendix 2: A basic summary of matrix algebra
References

4. Assaying ion channels: design and practice

Michiki Kasai, Toru Ide, and William S. Agnew

1. Introduction

2. Ligand binding assays
 Introduction
 Theoretical considerations
 Practical guidelines for receptor assay protocols

3. Receptor assays
 Assay for inositol 1,4,5-trisphosphate receptors
 Assay for voltage-sensitive Na$^+$ channels using labelled tetrodotoxin
 Assay for voltage-sensitive Na$^+$ channels using radiolabelled STX
Contents

4. Functional assay by bilayer reconstitution

References

5. Channel cloning, mutagenesis, and expression

Paul J. Whiting, Keith A. Wafford, Iris Pribilla, and Thomas Petri

1. Introduction

2. Isolation of cDNAs by hybridization screening of cDNA libraries
 - General principles
 - DNA probes for screening cDNA libraries
 - Screening of cDNA libraries
 - Obtaining full length cDNAs

3. Site-directed mutagenesis
 - General principles
 - Oligonucleotide-directed mutagenesis
 - PCR mutagenesis

4. Choice of expression system
 - Overview
 - *Xenopus* oocyte expression
 - Transiently transfected cells
 - Stably transfected cells
 - Baculovirus expression

5. *Xenopus* oocyte expression system
 - Overview
 - Preparation and injection of oocytes
 - Endogenous receptors and ion channels
 - Electrophysiological recording from *Xenopus* oocytes
 - Expression cloning

6. Transient and stable expression in mammalian cells
 - Transient expression
 - Stable expression

7. Baculovirus expression
 - Introduction
 - Construction of recombinant baculoviruses
 - Protein production

Acknowledgements

References
6. Antibodies as tools for the study of the structure and function of channel proteins

F. Anne Stephenson

1. Introduction 171
2. The choice of the antigen 172
 Bacterially derived fusion proteins 172
 Synthetic peptides 174
3. Antibody characterization 176
 Antibody production 176
4. Uses of antibodies 180
 Identification of the subunit complements of native channels 180
 Use of antibodies to map ligand binding sites and functional domains of proteins 185
 Immunocytochemical studies 188
5. Summary 188
Acknowledgements 189
References 189

7. Assembly, post-translational processing, and subcellular localization of ion channels

Neil S. Millar, Stephen J. Moss, and William N. Green

1. Introduction 191
 Scope of the chapter 191
2. Structural organization of ion channels 192
 Neurotransmitter-gated ion channels 192
 Voltage-gated calcium and sodium channels 193
 Voltage-gated potassium channels 193
 Other ion channels 193
3. Post-translational processing and folding 193
 Introduction 193
 Phosphorylation 194
 Glycosylation and fatty acylation 200
 Disulphide bond formation 202
 Protein folding 203
4. Subunit assembly 203
 Metabolic labelling of proteins expressed in mammalian cells 204
 Cell lysis and solubilization of ion channel proteins 205
 Immunoprecipitation 206
 Sucrose gradient centrifugation 208
 Overview of approaches to the study of subunit assembly 211
Contents

5. Subcellular localization of ion channels
 Surface expression of subunit combinations
 Immunofluorescence microscopy
6. Concluding remarks
Acknowledgements
References

8. Ion channels and signal transduction systems in plant and animal cells
 Ian McFadzean and Colin Brownlee

1. Introduction
2. Recording from plant cells
 Special considerations for recording from plant cells
 Voltage clamping plant cells
 Patch clamping plant cells
3. Measurement of cytosolic Ca\(^{2+}\)
 Methods for measuring cytosolic Ca\(^{2+}\)
 Use of fluorescent dyes
4. Animal cells
 The use of patch clamping to determine the involvement of a diffusible second messenger
 Ligand-gated ion channels
 G proteins: membrane-delimited pathways
 Pathways involving soluble second messengers
5. Conclusions
References

9. Channel structure
 John B. C. Findlay and Derek Marsh

1. Introduction
2. General modelling principles
 Topography
 Conformation
 ‘Sidedness’/orientation
 Folding
3. Spectroscopic characterization of channel structure and assembly
 Fourier-transform infrared (FTIR) spectroscopy
 Spin-label electron spin resonance (ESR) spectroscopy

xiv
Contents

Nuclear magnetic resonance (NMR) spectroscopy 259
Circular dichroism (CD) spectroscopy 262
Fluorescence spectroscopy 263

References 264

10. Electron microscopical analysis of ion channels 269

Andreas Holzenburg

1. Introduction 269
2. Reconstitution of ion channels into 2D crystals 270
 Reconstitution parameters 271
 Monitoring progress 276
 Trouble-shooting 279
3. Conventional electron microscopy 280
 Microscope requirements 280
 Specimen preparation 280
4. Image analysis and processing 283
5. High-resolution electron microscopy 285
Acknowledgements 288
References 288

Appendix 1 Addresses of suppliers 291

Index 295