Protein Blotting
A Practical Approach

Edited by
BONNIE S. DUNBAR
Department of Cell Biology, Baylor
College of Medicine, Houston

IRL PRESS
OXFORD UNIVERSITY PRESS
Oxford New York Tokyo
Protein blotting: a practical approach / edited by Bonnie S. Dunbar. (The Practical approach series; 140) Includes bibliographical references and index.
QP219.9W57P965 1994 574.19/245—dc20 93-42043
ISBN 0 19 963438 6 (Hbk)
ISBN 0 19 963437 8 (Pbk)

Typeset by Cambrian Typesetters, Frimley, Surrey
Printed in Great Britain by
Information Press Ltd, Eynsham, Oxford
Contents

List of contributors xxi
List of abbreviations xxiii

1. Historical introduction 1
 J. M. Gershoni
 References 2

SECTION 1. BASIC EQUIPMENT AND METHODS FOR PROTEIN BLOTTING

2. Introduction and basic set-up for protein transfer 5
 Bonnie S. Dunbar
 1. Introduction 5
 2. Equipment 5
 Basic equipment for one- and two-dimensional polyacrylamide gel electrophoresis (PAGE) prior to protein transfer 5
 Protein equipment for the electrophoretic transfer of proteins 7
 3. Buffers and detergents used for the electrophoretic transfer of proteins 8
 4. Types of immobilizing matrices 9
 5. Summary 9
 References 9

xi
3. Protein blotting and immunoblotting using nitrocellulose membranes

 Antonio De Maio

1. Scope and introduction 11
2. Transfer of proteins onto nitrocellulose filters 11
 Type of gel to be blotted 12
 Preparation of the samples 12
 Electrophoretic transfer of proteins onto nitrocellulose filters 14
3. Staining of blots for total protein pattern 16
4. Immunostaining of blots 17
 Comments about the immunostaining protocol 19
5. Lectin overlays 25
 Controls for lectin overlays 28
 Sialidase treatment of blots 29
6. Other protein blot applications 29
7. Concluding remarks 29
 Acknowledgements 29
 Appendix 1 29
 Appendix 2 30
 References 31

4. Protein blotting using polyvinylidene fluoride membranes

 Michael A. Mansfield

1. Introduction 33
2. Membrane selection 33
 Available membranes 33
 Choosing a membrane 35
3. Blotting procedures 38
 Handling membranes 38
 Membrane preparation 38
 Tank transfer 39
 Semi-dry transfer 41
 Optimizing transfer 45
 Post-transfer manipulations 46
4. Protein visualization 46
 Transillumination 46
5. Protein blotting using semi-dry electrophoretic transfer equipment

Gunilla Jacobson

1. Introduction

2. Composition of a transfer sandwich

3. Equipment
 - Instruments used for semi-dry electrophoretic transfer
 - Blotting membranes
 - Filter papers
 - Buffer

4. Preparation of the transfer sandwich
 - Removing the gel from the backing
 - Equilibration of the gel with transfer buffer
 - Assembling and dismantling the transfer sandwich

5. Running conditions
 - Time and current
 - Cooling

6. Post-transfer treatment of the membrane
 - General protein staining
 - Specific protein staining
 - Plastic embedding of nitrocellulose membranes

7. Transfer recovery

8. Trouble-shooting
 - Gel residues on the backing film
 - Heating and/or voltage increase during transfer
 - Difficulties in separating the blotting membrane from the gel
 - No proteins are detected on the blotting membrane
 - Disturbed pattern on the blotting membrane
 - Low recovery on the blotting membrane

Acknowledgements

References
SECTION 2. PRINCIPLES AND METHODS FOR PREPARING SAMPLES FOR PROTEIN TRANSFER

6. Transfer and blocking conditions in immunoblotting

A. Van Dam

1. Introduction

2. Effects of antigen and antibody concentration on immunoblotting

3. Experimental design to detect the antigen or antibodies

4. How to determine protein loss and protein renaturation
 - Protein staining
 - Radiolabelled proteins
 - Protein renaturation
 - Optimization of transfer conditions
 - Transfer efficiency
 - Effects of SDS
 - Semi-dry blotting
 - Renaturation
 - Drying of the blot
 - Glutaraldehyde fixation
 - Blotting matrices
 - Saturation and incubation conditions
 - Detergents
 - Blocking proteins
 - Time and temperature
 - Choice of second antibody and substrate
 - Binding of proteins on dot-bLOTS
 - Quality control

References

7. Sample preparation for protein electrophoresis and transfer

Vaughan H. Lee and Bonnie S. Dunbar

1. Introduction
SECTION 3. DETECTION METHODS AND USES IN IMMUNOBLOTTING

9. Radiometric methods for detection in blots

R. A. Laskey

1. Introduction
2. Choosing a detection method
 When to use direct autoradiography
 When to use fluorography
 When to use an intensifying screen
 When to use a phosphorimager
3. How to use the detection methods
 General considerations for working with radiographic film
 Procedure for direct autoradiography
 Procedure for fluorography of weak β-emitters
 Use of intensifying screens to increase sensitivity for 32P or γ-ray emitters
4. Quantitation of film images, including chemiluminescent and bioluminescent images
5. The underlying principles of radioisotope detection by X-ray film

References

10. Bioluminescence-enhanced detection systems in protein blotting

Reinhard Erich Geiger

1. Introduction
2. Principle and application
3. Bioluminescence-enhanced detection: detection scheme
4. Special hints for application and trouble-shooting

References
11. Chemiluminescent detection systems for protein blotting

Ian Durrant and Sue Fowler

1. Introduction

2. Basic protocol for ECL Western blotting
 - Membrane blocking
 - Antibody incubations
 - Molecular weight estimation

3. Signal generation
 - Substrate preparation
 - Development of blots
 - Light capture
 - Trouble-shooting

4. Quantification of signal

5. Reprobing blots

6. Conclusion

References

12. Detection and characterization of glycoprotein carbohydrate chains after electrophoretic separation

Tatsuro Irimura and Hiroto Kawashima

1. Introduction

2. Lectin staining of electrophoretically separated glycoproteins with *in situ* chemical modification of carbohydrate chains

3. Release of oligosaccharides from electrophoretically separated glycoproteins

References
2. Preparation of PVDF replicas of SDS-PAGE gels

- SDS-PAGE and transfer to PVDF membranes
- Visualization of the blotted proteins

3. Elution of proteins from the PVDF membranes

- General comments
- Elution of proteins with detergent-based eluants
- Elution of proteins with other eluants

4. Immunization

- Acknowledgements
- References

16. Amino acid sequence analysis of blotted proteins

Richard G. Cook

1. Introduction
2. Preparation of the sample for sequencing
 - Gel electrophoresis
 - Blotting procedures
 - Protein detection
3. NH$_2$-terminal sequence analysis
4. Generation of peptides for internal sequence analysis
 - Elution and cleavage of proteins immobilized on PVDF
 - Enzymatic cleavage of PVDF-eluted peptides
 - Enzymatic digestion of proteins in gel slices
5. Concluding remarks
 - Acknowledgements
 - References

17. Renaturative catalytic blotting of enzyme proteins

Jia-Shi Zhu and Gary M. Gray

1. Introduction

Contents

2. Preparation of PVDF replicas of SDS-PAGE gels 190
 - SDS-PAGE and transfer to PVDF membranes 190
 - Visualization of the blotted proteins 192
3. Elution of proteins from the PVDF membranes 195
 - General comments 195
 - Elution of proteins with detergent-based eluants 197
 - Elution of proteins with other eluants 199
4. Immunization 202
 - Acknowledgements 204
 - References 205
16. Amino acid sequence analysis of blotted proteins 207
 Richard G. Cook
1. Introduction 207
2. Preparation of the sample for sequencing 208
 - Gel electrophoresis 208
 - Blotting procedures 210
 - Protein detection 212
3. NH$_2$-terminal sequence analysis 213
4. Generation of peptides for internal sequence analysis 213
 - Elution and cleavage of proteins immobilized on PVDF 214
 - Enzymatic cleavage of PVDF-eluted peptides 217
 - Enzymatic digestion of proteins in gel slices 218
5. Concluding remarks 219
 - Acknowledgements 219
 - References 219
17. Renaturative catalytic blotting of enzyme proteins 221
 Jia-Shi Zhu and Gary M. Gray
1. Introduction 221