Chemical Generation and Reception of Radio- and Microwaves

Anatoly L. Buchachenko
Eugene L. Frankevich

VCH
Anatoly L. Buchachenko
Institute of Chemical Physics
Academy of Sciences
University of Moscow
117977 Moscow
Russia

Eugene L. Frankovich
Institute of Chemical Physics
Academy of Sciences
117977 Moscow
Russia

This book is printed on acid-free paper. ©

Library of Congress Cataloging-in-Publication Data

Buchachenko, A. L. (Anatoly Leonidovich)
Chemical generation and reception of radio and microwaves/
Anatoly L. Buchachenko, Eugene L. Frankovich.
p. cm.
Includes index.
ISBN 1-56081-630-9
QD462.B83 1994
541.2'8--dc20
93-28335
9401234567

© 1994 VCH Publishers, Inc.

This work is subject to copyright. All rights reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Registered names, trademarks, etc., used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Printed in the United States of America

ISBN 1-56081-630-9 VCH Publishers
ISBN 3-527-89630-9 VCH Verlagsgesellschaft

Printing History:
10 9 8 7 6 5 4 3 2 1

VCH Publishers, Inc.
220 East 23rd Street
New York, New York 10010
VCH Verlagsgesellschaft mbH
P.O. Box 10 11 61
69451 Weinheim
Germany

VCH Publishers (UK) Ltd.
8 Wellington Court
Cambridge CB1 1HJ
United Kingdom
Contents

Chapter 1. Magnetic Scenario of Chemical Reaction 1
- 1.1. The Energy Dogma in Chemistry 1
- 1.2. Spin and Spin States 3
- 1.3. Spin Selectivity of Chemical Reactions 6

Chapter 2. Magnetic Interactions in Chemical Reactions 11
- 2.1. Radical Pair Dynamics 11
- 2.2. Spin Dynamics 13
- 2.3. Theory of the Extended Spin Dynamics 17

Chapter 3. Magnetic Effects in Chemical Reactions 25
- 3.1. Magnetic Field Effect 25
- 3.2. Magnetic Isotope Effect 30
- 3.3. Chemically Induced Dynamic Nuclear Polarization 33
- 3.4. Chemically Induced Dynamic Electron Polarization 37
Chapter 4. Chemically Induced Radio-Frequency Emission 41

4.1. Chemical Pumping 41
4.2. Self-Excitation of Radio-Frequency Generation 45
4.3. Experimental Observations of Radio-Frequency Emission 48
4.4. Dynamics of Radio-Frequency Generation 52
4.5. Chemical Raser 54

Chapter 5. Reaction Yield Detected Magnetic Resonance—RYDMR 57

5.1. Principle of Chemical Reception of Electromagnetic Waves 57
5.2. Reaction Yield Detected Magnetic Resonance—RYDMR 62
5.3. On the Theory of RYDMR Spectra 71
5.4. Parameters Depending on the Rate of Processes in Pairs 74
5.5. RYDMR Spectroscopy Technique 76
5.6. Main Conditions of the Existence of the Magnetic Resonant Effect on the Reaction Rate 84

Chapter 6. RYDMR in Solids 87

6.1. Paramagnetic Species in Molecular Solids 87
6.2. Spin Selectivity in Photo- and Radiation-Induced Processes 91
6.3. Spin Selective Processes in Electron-Hole or Ion Radical Pairs 95
6.4. Spin Selective Interaction of Charge Carriers with Paramagnetic Sites 97
6.5. Conductivity and Spin Effects in Conducting Polymers 100
6.6. RYDMR Spectra of Ion Radicals in Hydrocarbon Solids 101
6.7. RYDMR of Short-Lived Pairs of Triplet Excitons 102

Chapter 7. RYDMR in Liquid Solutions 117

7.1. RYDMR in Radical Ion Pairs Generated by Ionizing Radiation 117
7.2. RYDMR in Pairs of Neutral Radicals 125