Disclaimer

The experiments in this book have been exhaustively tested for safety and all attempts have been made to use the least hazardous chemicals and procedures possible. However, the author and publisher cannot be held liable for any damage which may occur during the performance of the experiments. It is assumed that before an experiment is initiated, a material safety data sheet for each chemical used will have been studied by the Instructor and students to ensure its safe handling and disposal.

Sponsoring Editor: Robin Heyden
Editorial Assistant: Korinna Sodic
Production Editor: Jean Lake
Art and Design Manager: Michele Carter
Cover Photography and Design: Martucci Studio
Text Design: Eleanor Mennick
Copy Editor: Mary Prescott
Composition and Illustrations: Interactive Composition Corporation
Printing and Binding: R. R. Donnelly and Sons

Copyright © 1993 by the Benjamin/Cummings Publishing Company, Inc.
All rights reserved. No part of this publication may be reproduced, stored in a database or retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America. Published simultaneously in Canada.

Library of Congress Cataloging-in-Publication Data

Boyer, Rodney F.
Modern experimental biochemistry / Rodney F. Boyer. — 2nd ed.
p. cm. — (Benjamin/Cummings series in the life sciences and chemistry)
Includes bibliographical references and index.
QP519.7.B68 1993
574.19'2—dc20
92-35064
CIP

123456789—D0—9876543

The Benjamin/Cummings Publishing Company, Inc.
390 Bridge Parkway
Redwood City, California 94065
Table of Contents

Part I Theory and Experimental Techniques

Chapter 1 Introduction to the Biochemistry Laboratory 3
- A. Safety in the Laboratory 3
- B. The Laboratory Notebook 7
 - Details of Experimental Write-up 8
- C. Cleaning Laboratory Glassware 10
 - Cleaning Plasticware and Glassware 10
 - Cleaning Quartz and Glass Cuvettes 10
- D. Quantitative Transfer of Liquids 11
 - Filling a Pipet 12
 - Disposable Pasteur Pipets 12
 - Calibrated Pipets 12
 - Automatic Pipetting Systems 14
 - Cleaning and Drying Pipets 16
- E. Preparation and Storage of Solutions 17
 - Water Quality 17
 - Reagent and Solution Preparation and Storage 18
- F. Statistical Analysis of Experimental Measurements 19
 - Analysis of Experimental Data 19
 - Determination of the Mean, Sample Deviation, and Standard Deviation 20
 - Statistical Analysis in Practice 24
- References 26

Chapter 2 General Laboratory Procedures 29
- A. pH Measurements, Buffers, and Electrodes 29
 - Measurement of pH 30
 - Biochemical Buffers 32
Chapter 3 Separation and Purification of Biomolecules by Chromatography 59

A. Introduction to Chromatography 59
 Partition versus Adsorption Chromatography 60

B. Paper and Thin-Layer Chromatography 61
 Preparation of the Stationary Support 62
 Solvent Development of the Support 63
 Detection and Measurement of Components 64
 Applications of Paper and Thin-Layer Chromatography 64

C. Gas Chromatography 65
 Instrumentation 65
 Selection of Operating Conditions 67
 Analysis of GC Data 69
 Advantages and Limitations of GC 70

D. Column Chromatography (GC) 70
 Operation of a Chromatographic Column 71
Packing the Column 72
Loading the Column 72
Eluting the Column 72
Collecting the Eluent 74
Detection of Eluting Components 74
Advantages and Limitations of Adsorption Column Chromatography 75

E. Ion-Exchange Chromatography 75
 Ion-Exchange Resins 76
 Selection of the Ion Exchanger 77
 Choice of Buffer 79
 Preparation of the Ion Exchanger 79
 Using the Ion-Exchange Resin 80
 Storage of Resins 81

F. Gel Exclusion Chromatography 81
 Theory of Gel Filtration 81
 Physical Characterization of Gel Chromatography 82
 Chemical Properties of Gels 83
 Selecting a Gel 85
 Gel Preparation and Storage 85
 Operation of a Gel Column 86
 Applications of Gel Exclusion Chromatography 87

G. High-Performance Liquid Chromatography (HPLC) 90
 Instrumentation 91
 Stationary Phases in HPLC 94
 The Mobile Phase 98
 Solvents for HPLC Operation 99
 Gradient Elution in HPLC 100
 Sample Preparation and Selection of HPLC Operating Conditions 101
 FPLC—A Modification of HPLC 102

H. Affinity Chromatography and Immunoabsorption 102
 Chromatographic Media 104
 The Immobilized Ligand 104
 Attachment of Ligand to Matrix 105
 Experimental Procedure for Affinity Chromatography 108

I. Perfusion Chromatography

References 111
Chapter 4 Characterization of Proteins and Nucleic Acids
by Electrophoresis 115
 A. Theory of Electrophoresis 115
 B. Methods of Electrophoresis 117
 Polyacrylamide Gel Electrophoresis (PAGE) 117
 Nucleic Acid Sequencing Gels 126
 Agarose Gel Electrophoresis 126
 Pulsed Field Gel Electrophoresis (PFGE) 130
 Isoelectric Focusing of Proteins 132
 Two-Dimensional Electrophoresis of Proteins 135
 Capillary Electrophoresis (CE) 135
 Immunoelectrophoresis (IE) 136
 C. Practical Aspects of Electrophoresis 138
 Instrumentation 138
 Reagents 138
 Staining and Detecting Electrophoresis Bands 139
 Protein and Nucleic Acid Blotting 141
 Analysis of Electrophoresis Results 141
 References 143

Chapter 5 Spectroscopic Analysis of Biomolecules 147
 A. Ultraviolet-Visible Absorption Spectrophotometry 147
 Principles 147
 Instrumentation 152
 Applications 156
 B. Fluorescence Spectrophotometry 164
 Principles 164
 Instrumentation 167
 Applications 168
 References 171

Chapter 6 Radioisotopes in Biochemical Research 173
 A. Origin and Properties of Radioactivity 173
 Introduction 173
 Isotopes in Biochemistry 176
 Units of Radioactivity 177
 B. Detection and Measurement of Radioactivity 178
 Liquid Scintillation Counting 178
Experiment 8 Fatty Acid Content of Triacylglycerols in Natural Oils 335
Experiment 9 Identification of Carbohydrates by Polarimetry 347
Experiment 10 Characterization of Hemoglobin A1c by Affinity Chromatography 363
Experiment 11 Isolation, Separation and Spectrophotometric Characterization of Photosynthetic Pigments 379
Experiment 12 Photoinduced Proton Transport Through Chloroplast Membranes 391
Experiment 13 Isolation, Subfractionation and Enzymatic Analysis of Beef Heart Mitochondria 403
Experiment 14 Cholesterol (Total and HDL) and Uric Acid Content of Blood Serum: Enzymes as Reagents in Clinical Chemistry 417
Experiment 15 Vitamin C Content of Fruits, Vegetables and Other Foods 433
Experiment 16 Activity and Thermal Stability of Acrylamide Gel–Immobilized Peroxidase: An Experiment in Biotechnology 441
Experiment 17 Extraction of Chromosomal DNA from Bacterial Cells 451
Experiment 18 Characterization of Nucleic Acids by Fluorescence of Bound Ethidium Bromide 465
Experiment 19 Preparation, Isolation, and Purification of Bacterial Plasmid DNA 475
Experiment 20 Rapid, Microscale Isolation of Plasmid DNA 491
Experiment 21 The Action of Restriction Endonucleases on Plasmid or Viral DNA 497
Experiment 22 Specific Cleavage of an Oligomeric Ribonucleotide Substrate by a Ribozyme (RNA Enzyme) 509

Appendices
I Properties of Common Acids and Bases 521
II Properties of Common Buffer Compounds 522
III pKₐ Values and pHₐ Values of Amino Acids 523
IV Molecular Weights of Some Common Proteins 524
V Common Abbreviations used in this Text 525
VI Units of Measurement 527
VII Table of the Elements 529
VIII Values of t for Analysis of Statistical Confidence Limits 531
IX Solutions to Selected Questions 532

Index 547