Neocortical Development

Shirley A. Bayer, Ph.D.
Department of Biology
Indiana University and
Purdue University at Indianapolis
Indianapolis, Indiana

Joseph Altman, Ph.D.
Department of Biological Sciences
Purdue University
West Lafayette, Indiana

Raven Press New York
Contents

Preface ... ix
Acknowledgments ... xi
Abbreviations .. xiii

PART ONE: OVERVIEW OF MAJOR EVENTS IN CORTICAL DEVELOPMENT

1 Early Cortical Development: A Brief Historical Review 3
 1.1 About the Neuroepithelium in General, 3
 1.2 The Germinal Matrix of the Cerebral Cortex, 5
 1.3 The Intermediate Zone of the Cerebral Cortex, 5
 1.4 The Settling of Neurons in the Cortical Gray, 5

2 Neocortical Morphogenesis and Histogenesis: A Chronological Atlas 11
 2.1 The Formation of the Paired Telencephalic Vesicles, 11
 2.2 Morphogenesis of the Neocortex, 17
 2.3 Histogenesis of the Neocortex, 25

3 Overview of Global Neurogenetic Gradients in the Neocortex and Limbic Cortex .. 30
 3.1 Neurogenetic Gradients in Layer I and the Subplate, 31
 3.2 Neurogenetic Gradients in Layers VI–II, 33
 3.3 Linking the Transverse and Longitudinal Gradients to Afferent Fiber Growth into the Developing Neocortex, 42

PART TWO: EMBRYONIC DEVELOPMENT OF THE NEOCORTEX

4 The Germinal Matrix of the Developing Rat Neocortex 49
 4.1 Evidence for Stratification and Cellular Heterogeneity in the Germinal Matrix, 50
 4.2 Stratification and Heterogeneity in the Germinal Matrix Related to the Generation of Neurons, Glia, and Ependymal Cells, 62

5 The Development of the Primordial Plexiform Layer and its Subsequent Partitioning into Layer I and the Subplate (Layer VII) 65
 5.1 The Formation of Channel 1 and the Settling of the Cajal-Retzius Cells, 65
 5.2 The Formation of Channel 2 and the Settling of Neurons in the Subplate, 67
 5.3 Transient Positions of the Subplate Neurons and Morphogenesis of the Cortical Plate, 71
 5.4 Subplate and Cortical Plate Blending in the Limbic Cortex, 72
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Development of the Cortical Plate</td>
<td>73</td>
</tr>
<tr>
<td>6.1</td>
<td>The Radial Morphogenetic Gradient in the Cortical Plate: A Brief Golgi Analysis</td>
<td>73</td>
</tr>
<tr>
<td>6.2</td>
<td>The Settling of Cells in the Cortical Plate: Morphogenetic Evidence for an Uneven Radial Neurogenetic Gradient</td>
<td>77</td>
</tr>
<tr>
<td>7</td>
<td>Stratification in the Cortical Transitional Field</td>
<td>83</td>
</tr>
<tr>
<td>7.1</td>
<td>The Sequential Appearance of Five Bands of Heavily Labeled Cells in the Transitional Field</td>
<td>84</td>
</tr>
<tr>
<td>7.2</td>
<td>The Fate of Cells in the First Inferior Band and the Third Superior Band</td>
<td>95</td>
</tr>
<tr>
<td>7.3</td>
<td>Bands in the Transitional Field in Relation to the Development of Cytoarchitectonic Differentiation of the Cortex</td>
<td>98</td>
</tr>
<tr>
<td>8</td>
<td>Quantitative Studies of the Nuclear Area and Orientation in the Developing Neocortex</td>
<td>106</td>
</tr>
<tr>
<td>8.1</td>
<td>Cell Packing Density</td>
<td>108</td>
</tr>
<tr>
<td>8.2</td>
<td>Nuclear Area and Orientation in Cell Bodies of the Ventricular Zone, Subplate, and Cortical Plate</td>
<td>109</td>
</tr>
<tr>
<td>8.3</td>
<td>Planar Differences in the Area and Orientation of Cell Nuclei in the Subventricular and Intermediate Zones</td>
<td>112</td>
</tr>
<tr>
<td>9</td>
<td>Cell Migration in the Developing Neocortex</td>
<td>116</td>
</tr>
<tr>
<td>9.1</td>
<td>Changing Spatial Relationship Between the Ventricular Zone and the Cortical Plate</td>
<td>117</td>
</tr>
<tr>
<td>9.2</td>
<td>Tracking Cell Migration in Thymidine Autoradiograms</td>
<td>117</td>
</tr>
<tr>
<td>9.3</td>
<td>Three-Dimensional Reconstructions of the Lateral Cortical Stream</td>
<td>125</td>
</tr>
<tr>
<td>9.4</td>
<td>Cell Orientation in the Intermediate Zone Beneath Anterior and Posterior Parts of the Dorsal Neocortex</td>
<td>125</td>
</tr>
<tr>
<td>9.5</td>
<td>Relating These Data to Other Hypotheses of Neocortical Cell Migration</td>
<td>127</td>
</tr>
<tr>
<td>10</td>
<td>Experimental Studies of Neocortical Development Using x-Irradiation</td>
<td>128</td>
</tr>
<tr>
<td>10.1</td>
<td>The Phenomenon of Neuroepithelial Collapse and the Delineation of the Cortical Primordium</td>
<td>129</td>
</tr>
<tr>
<td>10.2</td>
<td>Relating Changes in Cortical Radiosensitivity to Developmental Changes Revealed with Thymidine Autoradiography</td>
<td>135</td>
</tr>
<tr>
<td>10.3</td>
<td>The Possible Cellular Basis of the Regional Differences in Patchy Neuroepithelial Collapse</td>
<td>142</td>
</tr>
<tr>
<td>10.4</td>
<td>The Differential Radiosensitivity of Migrating Neurons: The Factor of Age</td>
<td>143</td>
</tr>
<tr>
<td>10.5</td>
<td>Changing Radiosensitivity of Different Cellular Components of the Developing Cortex: A Quantitative Analysis</td>
<td>146</td>
</tr>
<tr>
<td>10.6</td>
<td>Possible Long-Term Effects of Hazardous Influences on Cortical Development</td>
<td>148</td>
</tr>
</tbody>
</table>

PART THREE: INTRINSIC NEUROGENETIC GRADIENTS IN SPECIFIC NEOCORTICAL AREAS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Development of the Visual Areas</td>
<td>153</td>
</tr>
<tr>
<td>11.1</td>
<td>The Radial Neurogenetic Gradient</td>
<td>154</td>
</tr>
<tr>
<td>11.2</td>
<td>Transverse Neurogenetic Gradients in the Deep Layers</td>
<td>155</td>
</tr>
<tr>
<td>11.3</td>
<td>Transverse Neurogenetic Gradients in Granular Layer IV</td>
<td>155</td>
</tr>
</tbody>
</table>
11.4 Transverse and Sandwich Neurogenetic Gradients in the Supragranular Layers, 157
11.5 Correlations Between Neurogenetic Gradients and Thalamocortical Connections, 158
11.6 Possible Significance of the Shift in Gradients Between the Superficial and Deep Layers, 160
12 Development of the Auditory Areas .. 161
12.1 The Radial Neurogenetic Gradient, 163
12.2 The Transverse Neurogenetic Gradient, 163
12.3 Longitudinal Neurogenetic Gradients, 164
12.4 Correlations Between Neurogenetic Gradients and Thalamocortical Connections, 165
13 Development of the Somatosensory Areas 167
13.1 The Radial Neurogenetic Gradient, 169
13.2 The Transverse Neurogenetic Gradient, 170
13.3 The Longitudinal Neurogenetic Gradient, 171
13.4 Comments on Barrel Specializations and Neurogenetic Gradients, 172
13.5 Correlation Between Neurogenetic Gradients and Thalamocortical Projections, 173
14 Development of the Motor Areas ... 175
14.1 The Radial Neurogenetic Gradient, 176
14.2 The Transverse Neurogenetic Gradient, 178
14.3 Longitudinal Neurogenetic Gradients, 180
14.4 Correlations Between Neurogenetic Gradients in Layer V with Outgrowth of the Corticospinal Tract, 181
14.5 Correlations Between Neurogenetic Gradients and Thalamocortical Projections, 183
14.6 Implications of the Reversal of the Transverse Gradient in the Superficial Layers, 185
15 Development of the Limbic Cortical Areas 186
15.1 Neurogenetic Gradients in the Lateral Limbic Areas, 187
15.2 Neurogenetic Gradients in the Medial Limbic Areas, 191
15.3 Neurogenetic Gradients in the Orbital Cortex, 197
15.4 Correlations Between Neurogenetic Gradients and Anatomical Connections in the Limbic Cortex, 198

PART FOUR: THEORETICAL ISSUES, SUMMARY, AND CONCLUSIONS

16 Theoretical Issues ... 203
16.1 The Germinal Source of Cortical Neurons and Glia, 203
16.2 The Origin of Cortical Heterogeneity, 205
16.3 Neurogenetic Gradients in Relation to Thalamic Connections, 208
16.4 The Place of the Neocortex in Cortical Evolution, 213

17 Summary and Conclusions .. 216
17.1 Successive Transformations of the Cortical Germinal Matrix, 216
17.2 Developmental Events in the Transitional Field, 220
17.3 The Formation of the Primordial Plexiform Layer and the Cortical Plate, 221
17.4 Cortical Neurogenetic Gradients, 222
APPENDICES

Appendix 1 Histological Procedures for Normative Embryonic Studies .. 227

Appendix 2 Tritiated Thymidine Autoradiographic Methods ... 228
 2.1 Long-Survival Autoradiography, 228
 2.2 Short- and Sequential-Survival Autoradiography, 230

Appendix 3 Statistical Procedures ... 231
 3.1 Analyzing Data from the Long-Survival Thymidine Autoradiographic Series (Chapters 3 and 11–15), 231
 3.2 Analyzing Data from the Quantitative Embryonic Studies (Chapters 8–10), 231

Appendix 4 Quantitative Procedures for Three-Dimensional Computer Reconstructions ... 232
 4.1 Choosing the Specimens and Photographing the Sections, 232
 4.2 Aligning the Photographed Brain Sections, 232
 4.3 Delineating the Neocortex and Collecting the Raw Data, 232
 4.4 Final Reconstruction, 233

Appendix 5 Quantitative Procedures for Determining Cell Packing Density, Cell Size, and Cell Orientation ... 234
 5.1 Cell Packing Density, 234
 5.2 Determination of Nuclear Area, 234
 5.3 Determination of Cell Orientation, 235

Appendix 6 Using x-Irradiation to Determine the Positions of Vulnerable Cell Populations ... 236

References ... 237

Subject Index ... 249