THE EMERGENCE OF BACTERIAL GENETICS

THOMAS D. BROCK
University of Wisconsin, Madison

COLD SPRING HARBOR LABORATORY PRESS
1990
Contents

Preface, ix

1
INTRODUCTION, 1

1.1 The Founders of Bacterial Genetics, 1
1.2 Key Experiments of Bacterial Genetics, 3
REFERENCES, 6

2
ROOTS IN CLASSICAL GENETICS, 7

2.1 Mendel's Work, 7
2.2 Darwin's Work, 8
2.3 de Vries's Work, 9
2.4 William Bateson, 10
2.5 Wilhelm Johannsen and the Concept of the Gene, 11
2.6 A.E. Garrod: Inborn Errors of Metabolism, 12
2.7 T.H. Morgan: Chromosome Theory of Heredity, 12
2.8 H.J. Muller and the Concept of Mutation, 15
2.9 Some Connections between Higher Organisms and Bacteria, 17
 Haeckel and the phylogeny of bacteria, 17
 Troland and the enzyme theory of life, 18
 Beadle and Tatum, 20
 Milislav Demerec, 20
2.10 Delayed Establishment of Mendelian Genetics in France, 22
2.11 Conclusion, 23
REFERENCES, 23

3
ROOTS IN BACTERIOLOGY, 25

3.1 Ideas of Constancy of Bacterial Species, 25
3.2 The Pure Culture Technique before Robert Koch, 26
3.3 Koch's Plate Technique, 27
3.4 Characterization of Bacterial Pathogens, 28
3.5 Pasteur's Work on Attenuation, 29
3.6 Colony Characteristics and Life Cycles of Bacteria, 30
3.7 Darwin or Lamarck?, 31
3.8 Nutrition as a Background for Bacterial Genetics, 32
 Intermediary metabolism, 34
3.9 The Bacterial Nucleus, 34
 The eucaryotic nucleus, 35
 Early studies on the bacterial nucleus, 35
 Electron microscopy of the bacterial nucleus, 37
 Electron microscopy of isolated DNA, 38
 Autoradiographic studies with DNA, 39

3.10 Conclusion, 41
REFERENCES, 41

4 MUTATION, 45

4.1 Martinus Beijerinck and the Application of de Vries's Mutation Theory to Bacteria, 46
4.2 The Pure Line Concept, 48
4.3 Are Bacteria More Mutable Than Other Organisms?, 50
4.4 Escherichia coli mutabile, 50
 The work of I.M. Lewis on Escherichia coli mutabile, 52
4.5 Bacterial Dissociation, 53
4.6 Training, 54
 Sir Paul Fildes, 55
 Sir Cyril Hinshelwood, 56
4.7 Phage as an Element in Bacterial Variability, 57
4.8 Fluctuation Test: The Paper of Luria and Delbrück, 58
 The theory of the fluctuation test, 59
 Newcombe's spreading experiment, 63
4.9 Other Kinds of Bacterial Mutations, 63
4.10 Replica Plating and Indirect Selection of Bacterial Mutants, 65
 The replica-plating technique, 65
 Use of replica plating in indirect selection of resistant mutants, 67
4.11 Radiation and Other Mutagens, 67
 Phenotypic lag, 67
 Chemical mutagenesis, 68
4.12 Penicillin Selection of Nutritional Mutants, 68
4.13 Conclusion, 69
REFERENCES, 70

5 MATING, 75

5.1 The Neurospora Background, 75
5.2 Tatum's Work on Escherichia coli, 79
5.3 Lederberg's Early Work, 80
5.4 The Pre-Hayes Era of Bacterial Genetics, 87
5.5 The Work of William Hayes, 88
5.6 An Infective Factor Controlling Sex Compatibility, 90
 Evidence of self-incompatibility, 91
5.7 Hfr Strains and the Nature of the Mating Process, 94
Wollman and Jacob, 94
Interrupted mating, 95
5.8 Stages in the Mating Process, 97
5.9 Colicinogeny, 98
5.10 The Conversion of F+ to Hfr, 98
Curing F+ bacteria, 99
Implications, 99
5.11 The Chromosomal Organization of Hfr Bacteria, 100
5.12 F Prime Factors, 104
5.13 Genetic Homology between *Escherichia coli* and *Salmonella*, 105
5.14 Male-specific Bacteriophages, 105
5.15 The *Rec−* Phenotype, 106
5.16 An Important Synthesis, 106
5.17 Resistance Transfer Factors, 106
5.18 Physical Evidence for Structure of Plasmids, 107
5.19 Conclusion, 108
REFERENCES, 109

6
PHAGE, 113

6.1 Discovery and Early Work, 113
Twort’s work, 113
d’Herelle’s work, 114
The nature of the bacteriophage, 114
Intracellular or extracellular origin of phage, 115
6.2 Bacteriophage Research in the 1930s, 116
Burnet’s work, 116
Northrop’s work, 116
6.3 Delbrück and the Beginnings of Modern Research, 117
Biographical notes, 117
CalTech and Delbrück’s initial phage work, 120
One-step growth, 120
6.4 S.E. Luria, 122
Luria and Delbrück, 123
6.5 Bacteriophage Have Tails, 124
6.6 Luria and Delbrück at Cold Spring Harbor, 124
The “phage treaty”, 127
6.7 Delbrück at CalTech, 128
6.8 A.D. Hershey, 130
6.9 Phage Genetics: The First Steps, 131
Phage Mutants, 131
Mixed infection, 133
Crossing phage, 133
6.10 Fine Structure of the Gene: Benzer’s Work, 137
Classical genetics and the nature of the gene, 138
The rII mutation, 139
6.11 The Phage Genetic Map, 143
 Phenotypic mixing, 144
6.12 Biochemistry of Phage Replication, 144
 The prejudice against biochemistry, 145
 Chemistry of phage, 146
 Seymour S. Cohen, 147
 Biochemistry of T-even phage replication, 147
 Unusual bases in T-even DNA, 148
 The eclipse period, 149
6.13 The Hershey/Chase Experiment, 149
 Structure and osmotic properties of phage particles, 151
 Phage as transforming principle, 151
 The experiment, 152
6.14 Host and Virus Protein Synthesis, 154
6.15 The Restriction/Modification Phenomenon, 154
6.16 Conclusion, 156
 Nonbiochemical studies, 156
 Biochemical work, 157
 Virulent and temperature phage, 157

REFERENCES, 158

7 LYSOGENY, 163

7.1 The Nature of Lysogeny, 163
7.2 Early Studies on Lysogeny, 164
 Bordet's work, 164
 The discovery of the indicator system, 166
 Burnet's work, 167
7.3 The Bacillus megaterium System, 168
 The Wollmans' studies on Bacillus megaterium, 169
 Northrop's work, 170
7.4 The Work of André Lwoff, 170
 Lwoff's background, 170
 Lwoff's switch to lysogeny, 171
 The phage group's rejection of lysogeny, 172
 The experiments of Lwoff and Gutmann, 174
 Induction, 176
 Immunity, 178
7.5 Lysogenicity in Escherichia coli, 179
 Genetic mapping of lambda, 180
 Zygotic induction, 180
7.6 The Prophage as a Genetic Element, 182
 The genetics of prophage lambda, 182
 The location of the prophage, 183
 The Campbell model, 184
 Importance of lambda, 185
7.7 The Episome, 185

REFERENCES, 186
8

TRANSUDCTION, 189

8.1 Transduction in Salmonella, 189
 Norton Zinder, 190
 Discovery of transduction, 190
 Early interpretations of transduction, 192
 The filterable agent is phage, 193
8.2 Terminology of Transduction, 194
 Transduction and lysogeny, 195
8.3 Abortive Transduction, 196
8.4 Bacteriophage P1, 197
8.5 Fine-Structure Genetic Mapping Using Transduction, 197
 Terminology of bacterial genetics, 199
 The basic transduction experiment, 200
 Mutagenicity testing, 202
8.6 Transduction in the lambda System, 202
 The defectiveness of transducing lambda, 203
8.7 Defective Particles in General Transduction, 205
 Significance for recombinant DNA technology, 205
8.8 Meromixis, 206
8.9 Lysogenic or Phage Conversion, 206
 Conversion in Corynebacterium diphtheriae, 207
 Conversion in Salmonella, 209
 Terminology of conversion, 209
8.10 Significance of Transduction, 210

REFERENCES, 210

9

TRANSFORMATION, 213

9.1 Biology of Pneumococci, 214
 Pathogenesis, 214
 Type specificity, 215
 Other characteristics of pneumococci, 216
9.2 The Smooth/Rough Transformation, 217
9.3 The Discovery of Pneumococcus Transformation, 218
 Homologous and heterologous transformation, 220
 Biochemistry of the capsular acquisition, 224
 Confirmation of Griffith's work, 225
9.4 Early Work at the Rockefeller Institute, 226
 Oswald T. Avery, 226
 Confirmation of Griffith's work, 226
 Successful in vitro transformation, 228
 Successful soluble preparations, 229
9.5 The Transforming Principle Is DNA, 230
 Pre-DNA interpretations of pneumococcal transformation, 230
 The purification of transforming principle, 233
 The Sevag procedure, 234

REFERENCES, 234
The transforming principle is DNA, 234
Properties of the transforming principle, 235
The 1944 paper, 236
9.6 Early Acceptance of the DNA Work, 238
9.7 Post-World-War-II Work at Rockefeller, 240
9.8 Chemistry of DNA, 242
9.9 Transformation in Other Bacteria, 244
9.10 Transformation and Infective Heredity, 244
 Why infective heredity?, 246
9.11 Size of Transforming DNA, 246
9.12 Competence, 247
9.13 Genetic Markers, 248
 Antibiotic resistance markers, 249
 Linked markers, 250
9.14 Mechanism of Transformation, 252
9.15 Transformation as a Tool for Studying the Physical Properties of
 DNA, 253
9.16 Conclusion, 255
REFERENCES, 259

10
GENE EXPRESSION AND REGULATION, 265

10.1 Background on Enzymes, 266
10.2 Adaptive and Constitutive Enzymes, 267
 The Yudkin hypothesis, 270
 Spiegelman's work on yeast, 271
10.3 An Early Model of Gene Function, 273
10.4 The Early Work of Jacques Monod, 275
 Diauxie, 277
10.5 The Early Postwar Period: Theories and Experiments, 279
 The preenzyme model, 279
10.6 Lederberg's Work on the β-Galactosidase of Escherichia coli, 281
10.7 From Enzymatic Adaptation to Induced Enzyme Synthesis, 283
 Constitutive mutants, 283
 Artificial galactosides, 284
 Precursor Pz, 285
 Differential rate of enzyme synthesis, 286
 De novo β-galactosidase synthesis, 286
 The organizer, 287
 Permeability and another galactoside entity, 288
10.8 Enzyme Repression, 290
 The arginine system, 290
 Repression as a general phenomenon, 293
10.9 The PaJaMo Experiment, 294
 The basic PaJaMo experiment, 295
10.10 The Development of the Operon Concept, 299
10.11 Nature of the Repressor, 302
10.12 RNA and Protein Synthesis, 303
10.13 The Changing Concept of the Operon, 308
10.14 Colinearity of Gene and Protein, 311
10.15 Feedback Inhibition and Allosteric Interactions, 312
10.16 Catabolite Repression, 314
10.17 Conclusion, 315

REFERENCES, 316

11
FROM BACTERIAL GENETICS TO RECOMBINANT DNA, 325

REFERENCES, 329

Author Citation Index, 331

Subject Index, 337