CONTENTS

Contributors xi
Preface xv
Acknowledgments xvii

1. Introduction
 Lothar Spillmann and John S. Werner
 I. The Historical Context of Modern Visual Science 2
 II. Current Trends 2

2. Relating Neural Mechanisms to Visual Perception: Historical and Philosophical Considerations
 Gerald Westheimer
 Text 5

3. The Domain of Visual Science
 Davida Y. Teller
 I. Visual Science as a Scientific Domain 11
 II. Domain Criteria 12
 III. Analogies 13
 IV. Linking Propositions 14
 V. Patterns of Reasoning 16
 VI. Bridges 19

4. Interspecies Comparisons in the Understanding of Human Visual Perception
 M. L. J. Crawford, Richard A. Andersen, Randolph Blake, Gerald H. Jacobs, and Christa Neumeyer
 I. Introduction 23
 II. Comparative Aspects of Cat Spatial Vision 24

III. Insights into Human Color Vision from Studies of Other Mammals 34
IV. Color Vision in Goldfish: A Model for Human Color Vision? 38
V. Spectral Sensitivity of Humans, Rhesus Monkeys, and Neurons 43
VI. Comparison of Human and Monkey Visual Motion Perception 47
VII. Conclusions 50

5. The Control of Visual Sensitivity: Receptoral and Postreceptoral Processes
 Jan Walraven, Christina Enroth-Cugell, Donald C. Hood, Donald I. A. MacLeod, and Julie L. Schnapf
 I. Introduction 53
 II. The Light Stimulus 54
 III. Psychophysical Findings 58
 IV. Physiological Findings 77
 V. The Sites of Visual Adaptation: Integrating Psychophysical and Physiological Findings 94
 VI. Conclusions 100

6. Parallel Processing of Visual Information
 Peter Lennie, Colwyn Trevarthen, David Van Essen, and Heinz Wässle
 I. Introduction 103
 II. The Formation of Parallel Pathways 105
 III. Importance of Early Filtering 109
 IV. General Purpose Pathways 111
 V. Analysis of Signals in the Cortex 121
 VI. General Conclusions 128
7. The Perception of Brightness and Darkness: Relations to Neuronal Receptive Fields
Adriana Fiorentini, Günter Baumgartner, Svein Magnussen, Peter H. Schiller, and James P. Thomas
I. Introduction 129
II. Basic Perceptual Phenomena 130
III. The ON- and OFF-Channels of the Visual System 142
IV. Perceptual Correlates of ON- and OFF-Channels 145
V. Single Channel and Multichannel Models of Border Contrast Effects 152
VI. Conclusion 159

8. Color Perception: Retina to Cortex
Eberhart Zrenner, Israel Abramov, Munehira Akita, Alan Cowey, Margaret Livingstone, and Arne Valberg
I. Introduction 163
II. Color Appearance 164
III. Photopigments, Cones, and Primary Chromatic Mechanisms 169
IV. Neurophysiological Mechanisms of Color Opponency in Retinal Ganglion Cells 178
V. Detection of Light and Discrimination of Color 189
VI. Segregation of Form, Color, Movement, and Depth Processing in the Visual System 194
VII. Color Vision and Brain Damage 199
VIII. Conclusion 203

9. The Perception of Motion
Robert Sekuler, Stuart Anstis, Oliver J. Braddick, Thomas Brandt, J. Anthony Movshon, and Guy Orban
I. Introduction 205
II. The Many Functions of Motion 207
III. Spatial Limits to Motion 209
IV. Integration of Information 214
V. Heuristics for Motion Perception 217
VI. Cortical Mechanisms 220
VII. Motion Perception by a Moving Observer 226
VIII. Conclusions and Speculations 229

10. The Perception of Form: Retina to Striate Cortex
Hugh R. Wilson, Dennis Levi, Lamberto Maffei, Jyrki Rovamo, and Russell DeValois
I. Introduction 231
II. Optical Filtering and Photoreceptor Sampling 232
III. Spatial Sampling, Cortical Magnification, and Hyperacuity 234
IV. Spatial Filtering from Retina to Striate Cortex 240
V. Psychophysical Measurement of Spatial Filters 245
VI. Anatomy and Psychophysics of Cortical Modules 250
VII. Psychophysics and Physiology of Pattern Discrimination 254
VIII. Peripheral Pattern Discrimination 261
IX. Pattern Discrimination of Abnormal Vision 264
X. Ideas and Issues 266
XI. Conclusion 271

11. Form Perception and Attention: Striate Cortex and Beyond
Anne Treisman, Patrick Cavanagh, Burkhart Fischer, V. S. Ramachandran, and Rüdiger von der Heydt
I. Introduction 273
II. Extraction of Elementary Image Features 274
III. Neurophysiological Evidence on Early Stages of Visual Coding 283
IV. Coding of Boundaries and Contours 288
V. Representation of Shapes 293
VI. Perception and Identification of Objects 303
VII. Physiology of Visual Attention 308
VIII. Conclusions 315
12. The Perception of Stereodepth and
Stereo-motion: Cortical Mechanisms
David Regan, John P. Frisby, Gian F. Poggio,
Clifton M. Schor, and Christopher W. Tyler
I. Introduction
II. Contributions of Abnormal Vision to
Understanding Normal Vision 381
III. Contributions of Vision Testing to
Understanding Abnormal Vision 395
IV. Conclusions and Directions for the
Future 415

13. The Development of Vision and Visual
Perception
Richard C. Van Sluyters, Janette Atkinson,
Martin S. Banks, Richard M. Held, K.-Peter
Hoffmann, and Carla J. Shatz
I. Introduction 349
II. Optical and Retinal Factors in the De-
velopment of Human Performance 350
III. Development of Precortical and Cortical
Visual Pathways in Human Infants 359
IV. Neural Function in the Development of
Connections in the Mammalian Visual
System 365
V. Functional Correlates of the Segre-
gation of Ocular Dominance Columns
in Humans 371
VI. Innately Specified and Learned Com-
ponents in the Development of the
Optokinetic Reflex 373
VII. Conclusions 378

14. Normal and Abnormal Mechanisms of
Vision: Visual Disorders and Visual Deprivation
Anthony J. Adams, Ivan Bodis-Wollner, Jay M.
Enoch, Marc Jeannerod, and Donald E. Mitchell
I. Introduction
II. Contributions of Abnormal Vision to
Understanding Normal Vision 382
III. Contributions of Vision Testing to
Understanding Abnormal Vision 395
IV. Conclusions and Directions for the
Future 415

15. Computational Theories of
Visual Perception
Robert Shapley, Terrence Caelli, Stephen Grossberg,
Michael Morgan, and Ingo Rentschler
I. Introduction 417
II. Spatial Frequency Channels and the
Fourier Transform Theory of Vision 418
III. Pattern Acuity and Hyperacuity 419
IV. Computational Rules for Spatial
Vision 425
V. The Pattern Recognition Concept
of Digital Signal Processing 428
VI. Theories of the Neural Basis of
Brightness and Form Perception 434
VII. Neural Network Models of Pre-
attentive Visual Perception: Emergent
Segmentation and Featural Filling-In 439
VIII. Conclusions 447

to Richard Jung, Donald M. MacKay, and
Hans-Lukas Teuber
Otto D. Creutzfeldt
Text 449
References (with index to citations) 465
Index 521