Commonly Asked Questions in Thermodynamics

Marc J. Assaël
Aristotle University, Thessaloniki, Greece

Anthony R. H. Goodwin
Schlumberger Technology Corporation, Sugar Land, Texas, USA

Michael Stamatoudis
Aristotle University, Thessaloniki, Greece

William A. Wakeham
University of Southampton, United Kingdom

Stefan Will
Universität Bremen, Bremen, Germany
Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>xv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td>xvii</td>
</tr>
</tbody>
</table>

1 Definitions and the 1st Law of Thermodynamics 1

1.1 Introduction 1
1.2 What Is Thermodynamics? 2
1.3 What Vocabulary Is Needed to Understand Thermodynamics? 3
 1.3.1 What Is a System? 3
 1.3.2 What Is a State? 3
 1.3.3 What Are the Types of Property: Extensive and Intensive? 4
 1.3.4 What Is a Phase? 4
 1.3.5 What Is a Thermodynamic Process? 5
 1.3.6 What Is Adiabatic? 5
 1.3.7 What Is Work? 5
 1.3.8 What Is a Reversible Process or Reversible Change? 6
 1.3.9 What Are Thermal Equilibrium and the Zeroth Law of Thermodynamics? 7
 1.3.10 What Is Chemical Composition? 8
 1.3.11 What Is the Amount of Substance? 8
 1.3.12 What Are Molar and Mass or Specific Quantities? 9
 1.3.13 What Is Mole Fraction? 10
 1.3.14 What Are Partial Molar Quantities? 10
 1.3.15 What Are Molar Quantities of Mixing? 12
 1.3.16 What Are Mixtures, Solutions, and Molality? 12
 1.3.17 What Are Dilution and Infinite Dilution? 13
 1.3.18 What Is the Extent of Chemical Reaction? 14
1.4 What Are Intermolecular Forces and How Do We Know They Exist? 14
 1.4.1 What Is the Intermolecular Potential Energy? 14
 1.4.2 What Is the Origin of Intermolecular Forces? 17
 1.4.3 What Are Model Pair Potentials and Why Do We Need Them? 18
 1.4.3.1 What Is a Hard-Sphere Potential? 18
 1.4.3.2 What Is a Square Well Potential? 19
2.4.3 What Is the Change of Gibbs Function Associated with the Formation of a Mixture of Gases? 68
2.4.4 What Is the Equilibrium Constant for a Chemical Reaction in a Gas? 70
2.4.5 What Is the Entropy of a Perfect Gas? 72
2.5 Can Statistical Mechanics Be Used to Calculate the Properties of Real Fluids? 73
2.5.1 What Is the Canonical Partition Function? 74
2.5.2 Why Is the Calculation so Difficult for Real Systems? 77
2.6 What Are Real, Ideal, and Perfect Gases and Fluids? 78
2.7 What Is the Virial Equation and Why Is It Useful? 81
2.7.1 What Happens to the Virial Series for Mixtures? 86
2.8 What Is the Principle of Corresponding States? 87
2.8.1 How Can the Principle of Corresponding States Be Used to Estimate Properties? 91
2.9 What Is Entropy S? 94
2.9.1 How Can I Interpret Entropy Changes? 96
2.10 References 96

3 2nd Law of Thermodynamics 101
3.1 Introduction 101
3.2 What Are the Two 2nd Laws? 101
3.2.1 What Is Law 2a? 102
3.2.2 What Is Law 2b? 102
3.3 What Do I Do if There Are Other Independent Variables? 104
3.3.1 Is Zero a Characteristic Thermodynamic Function? 106
3.4 What Happens When There Is a Chemical Reaction? 107
3.5 What Am I Able To Do Knowing Law 2a? 109
3.5.1 How Do I Calculate Entropy, Gibbs Function, and Enthalpy Changes? 109
3.5.2 How Do I Calculate Expansivity and Compressibility? 113
3.5.3 What Can I Gain from Measuring the Speed of Sound in Fluids? 115
3.5.4 What Can I Gain from Measuring the Speed of Sound in Solids? 117
3.5.5 Can I Evaluate the Isobaric Heat Capacity from the Isochoric Heat Capacity? 118
3.5.6 Why Use an Isentropic Expansion to Liquefy a Gas? 119
3.5.7 Does Expansion of a Gas at Constant Energy Change Its Temperature? 119
3.5.8 What Is a Joule-Thomson Expansion? 121
3.6 What Am I Able to Do Knowing Law 2b? 122
 3.6.1 How Are Thermal Equilibrium and Stability Ensured? 122
 3.6.2 How Are Mechanical Equilibrium and Stability Ensured? 123
 3.6.3 How Are Diffusive Equilibrium and Stability Ensured? 124
3.7 Is There a 3rd Law? 126
3.8 How Is the 2nd Law Connected to the Efficiency of a Heat Engine? 128
3.9 What Is Exergy Good For? 131
3.10 References 136

4 Phase Equilibria 139
 4.1 Introduction 139
 4.1.1 What Is the Phase Rule? 140
 4.2 What Is Phase Equilibrium of a Pure Substance? 141
 4.2.1 What Does Clapeyron’s Equation Have to Do with Ice-Skating? 146
 4.2.2 How Do I Calculate the Chemical Potential? 148
 4.3 What Is the Condition of Equilibrium between Two Phases of a Mixture of Substances? 150
 4.3.1 What Is the Relationship between Several Chemical Potentials in a Mixture? 151
 4.3.2 What Can Be Done with the Differences in Chemical Potential? 151
 4.3.3 How Do I Measure Chemical Potential Differences (What Is Osmotic Pressure)? 151
 4.4 Do I Have to Use Chemical Potentials? What Is Fugacity? 154
 4.4.1 Can Fugacity Be Used to Calculate (Liquid + Vapor) Phase Equilibrium? 156
 4.5 What Are Ideal Liquid Mixtures? 158
 4.6 What Are Activity Coefficients? 159
 4.6.1 How Do I Measure the Ratio of Absolute Activities at a Phase Transition? 165
 4.6.2 What Is Thermodynamic Consistency? 167
 4.6.3 How Do I Use Activity Coefficients Combined with Fugacity to Model Phase Equilibrium? 168
 4.6.4 How Do We Obtain Activity Coefficients? 169
 4.6.5 Activity Coefficient Models 170
 4.6.6 How Can I Estimate the Equilibrium Mole Fractions of a Component in a Phase? 172
 4.7 How Do I Calculate Vapor + Liquid Equilibrium? 173
 4.7.1 Is There a Difference between a Gas and a Vapor? 173
 4.7.2 Which Equations of State Should Be Used in Engineering VLE Calculations? 179
4.7.3 What Is a Bubble-Point or Dew-Point Calculation and Why Is It Important? 183
4.7.4 What Is a Flash Calculation? 186
 4.7.4.1 What Is an Isothermal Flash? 186
 4.7.4.2 What Is an Isenthalpic Flash? 189
 4.7.4.3 What Is an Isentropic Flash? 189
4.8 Would Practical Examples Help? 190
 4.8.1 What Is the Minimum Work Required to Separate Air into Its Constituents? 190
 4.8.2 How Does a Cooling Tower Work? 194
4.9 What Is the Temperature Change of Dilution? 196
4.10 What about Liquid + Liquid and Solid + Liquid Equilibria? 202
 4.10.1 What Are Conformal Mixtures? 202
 4.10.2 What Are Simple Mixtures? 202
 4.10.3 What Are Partially Miscible Liquid Mixtures? 203
 4.10.4 What Are Critical Points in Liquid Mixtures? 204
 4.10.5 What about the Equilibrium of Liquid Mixtures and Pure Solids? 206
4.11 What Particular Features Do Phase Equilibria Have? 206
 4.11.1 What Is a Simple Phase Diagram? 207
 4.11.2 What Is Retrograde Condensation (or Evaporation)? 208
 4.11.3 What Is the Barotropic Effect? 208
 4.11.4 What Is Azeotropy? 209
4.12 What Are Solutions? 210
 4.12.1 What Is the Activity Coefficient at Infinite Dilution? 210
 4.12.2 What Is the Osmotic Coefficient of the Solvent? 211
4.13 References 212

5 Reactions, Electrolytes, and Nonequilibrium 217
 5.1 Introduction 217
 5.2 What Is Chemical Equilibrium? 217
 5.2.1 What Are Enthalpies of Reaction? 218
 5.3 What Are Equilibrium Constants? 222
 5.3.1 What Is the Temperature Dependence of the Equilibrium Constant? 223
 5.3.2 What Is the Equilibrium Constant for a Reacting Gas Mixture? 224
 5.3.3 What Is the Equilibrium Constant for Reacting Liquid or Solid Mixtures? 226
 5.3.4 What Is the Equilibrium Constant for Reacting Solutes in Solution? 227
7.3.3 What Software Packages Exist for the Calculation of Thermophysical Properties?

7.3.3.1 What Is the NIST Thermo Data Engine? 295
7.3.3.2 What Is the NIST Standard Reference Database 23, REFPROP? 296
7.3.3.3 What Is the NIST Standard Reference Database 4, SUPERTRAPP? 297
7.3.3.4 What Is the NIST Chemistry Web Book? 297
7.3.3.5 What Is the DIPPR Database 801? 297
7.3.3.6 What Is the Landolt-Börnstein? 298
7.3.3.7 What Is NIST STEAM? 298

7.3.4 How about Searching in Scientific and Engineering Journals? 298

7.4 How Can I Evaluate Reported Experimental Values?

7.4.1 What Are the Preferred Methods for the Measurement of Thermodynamic Properties?

7.4.1.1 How Do I Measure Density and Volume? 300
7.4.1.2 How Do I Measure Saturation or Vapor Pressure? 304
7.4.1.3 How Do I Measure Critical Properties? 306
7.4.1.4 How Do I Measure Sound Speed? 307
7.4.1.5 How Do I Measure Relative Electric Permittivity? 309

7.4.2 What Are the Preferred Methods for the Measurement of Transport Properties?

7.4.2.1 How Do I Measure Viscosity? 310
7.4.2.2 How Do I Measure Thermal Conductivity? 313
7.4.2.3 How Do I Measure Diffusion Coefficients? 314

7.5 How Do I Calculate Thermodynamic Properties?

7.5.1 How Do I Calculate the Enthalpy and Density of a Nonpolar Mixture? 315
7.5.2 How Do I Calculate the Enthalpy and Density of a Polar Substance? 316
7.5.3 How Do I Calculate the Boiling Point of a Nonpolar Mixture? 317
7.5.4 How Do I Calculate the VLE Diagram of a Nonpolar Mixture? 318
7.5.5 How Do I Calculate the VLE of a Polar Mixture? 319

7.6 How Do I Calculate Transport Properties?

7.7 References

Index