Contents

1 Introduction to systems engineering
1.1 Introduction
1.2 Information sources
1.3 Defining systems engineering
1.4 The need for systems engineering
1.5 The three evils of engineering
1.5.1 Complexity
1.5.2 Lack of understanding
1.5.3 Communication problems
1.5.4 The vicious triangle of evil
1.6 Systems-engineering concepts
1.6.1 Processes
1.6.2 Systems
1.6.3 The 'context'
1.6.4 Life cycles
1.6.5 Projects
1.7 Modelling
1.7.1 Defining modelling
1.7.2 The choice of model
1.7.3 The level of abstraction
1.7.4 Connection to reality
1.7.5 Independent views of the same system
1.8 SysML – the system modelling language
1.9 Using this book
1.9.1 Competency
1.10 Conclusions
1.11 References

2 An introduction to SysML
2.1 Introduction
2.2 What is SysML?
2.2.1 SysML's relation to UML
2.3 The history of SysML
2.3.1 A brief chronology
2.4 A comparison of versions
2.4.1 The original version
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.2</td>
<td>The two evaluation versions</td>
<td>36</td>
</tr>
<tr>
<td>2.4.3</td>
<td>SysML Merge Team version and the Final Adopted Specification</td>
<td>41</td>
</tr>
<tr>
<td>2.5</td>
<td>Potential concerns with SysML</td>
<td>43</td>
</tr>
<tr>
<td>2.6</td>
<td>Conclusions</td>
<td>44</td>
</tr>
<tr>
<td>2.7</td>
<td>Further reading</td>
<td>44</td>
</tr>
</tbody>
</table>

3 Modelling

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>47</td>
</tr>
<tr>
<td>3.2</td>
<td>Structural modelling</td>
<td>47</td>
</tr>
<tr>
<td>3.3</td>
<td>Structural modelling using block definition diagrams</td>
<td>49</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Modelling blocks and relationships</td>
<td>49</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Basic modelling</td>
<td>49</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Adding more detail to blocks</td>
<td>52</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Adding more detail to relationships</td>
<td>54</td>
</tr>
<tr>
<td>3.3.5</td>
<td>A note on instances</td>
<td>59</td>
</tr>
<tr>
<td>3.3.6</td>
<td>Other structural diagrams</td>
<td>60</td>
</tr>
<tr>
<td>3.3.7</td>
<td>Conclusion</td>
<td>60</td>
</tr>
<tr>
<td>3.4</td>
<td>Behavioural modelling</td>
<td>62</td>
</tr>
<tr>
<td>3.5</td>
<td>Behavioural modelling using state machine diagrams</td>
<td>64</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Introduction</td>
<td>64</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Basic modelling</td>
<td>64</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Behavioural modelling – a simple example</td>
<td>66</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Ensuring consistency</td>
<td>69</td>
</tr>
<tr>
<td>3.5.5</td>
<td>Solving the inconsistency</td>
<td>71</td>
</tr>
<tr>
<td>3.5.6</td>
<td>Alternative state machine modelling</td>
<td>73</td>
</tr>
<tr>
<td>3.5.7</td>
<td>Other behavioural diagrams</td>
<td>75</td>
</tr>
<tr>
<td>3.6</td>
<td>Identifying complexity through levels of abstraction</td>
<td>76</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Introduction</td>
<td>76</td>
</tr>
<tr>
<td>3.6.2</td>
<td>The systems</td>
<td>76</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Structural view</td>
<td>76</td>
</tr>
<tr>
<td>3.6.4</td>
<td>Behavioural views</td>
<td>77</td>
</tr>
<tr>
<td>3.7</td>
<td>Conclusions</td>
<td>81</td>
</tr>
<tr>
<td>3.8</td>
<td>Reference</td>
<td>81</td>
</tr>
</tbody>
</table>

4 The SysML diagrams

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>83</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Overview</td>
<td>83</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Terminology</td>
<td>84</td>
</tr>
<tr>
<td>4.2</td>
<td>The structure of SysML diagrams</td>
<td>85</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Frames</td>
<td>85</td>
</tr>
<tr>
<td>4.3</td>
<td>Stereotypes</td>
<td>87</td>
</tr>
<tr>
<td>4.4</td>
<td>The SysML meta-model</td>
<td>88</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Diagram ordering</td>
<td>90</td>
</tr>
<tr>
<td>4.4.2</td>
<td>The worked example</td>
<td>90</td>
</tr>
</tbody>
</table>
4.5 Block definition diagrams (structural)
- **4.5.1 Overview**
- **4.5.2 Diagram elements**
- **4.5.3 Example diagrams and modelling – block definition diagrams**
- **4.5.4 Using block definition diagrams**

4.6 Internal block diagrams (structural)
- **4.6.1 Overview**
- **4.6.2 Diagram elements**
- **4.6.3 Examples and modelling – internal block diagrams**
- **4.6.4 Using internal block diagrams**

4.7 Package diagrams (structural)
- **4.7.1 Overview**
- **4.7.2 Diagram elements**
- **4.7.3 Examples and modelling – package diagrams**
- **4.7.4 Using package diagrams**

4.8 Parametric diagrams (structural)
- **4.8.1 Overview**
- **4.8.2 Diagram elements**
- **4.8.3 Examples and modelling – parametric diagrams**
- **4.8.4 Using parametric diagrams**

4.9 Requirement diagrams (structural)
- **4.9.1 Overview**
- **4.9.2 Diagram elements**
- **4.9.3 Examples and modelling – requirement diagrams**
- **4.9.4 Using requirement diagrams**

4.10 State machine diagrams (behavioural)
- **4.10.1 Overview**
- **4.10.2 Diagram elements**
- **4.10.3 Examples and modelling – state machine diagrams**
- **4.10.4 Using state machine diagrams**

4.11 Sequence diagrams (behavioural)
- **4.11.1 Overview – sequence diagrams**
- **4.11.2 Diagram elements – sequence diagrams**
- **4.11.3 Examples and modelling – sequence diagrams**
- **4.11.4 Using sequence diagrams**

4.12 Activity diagrams (behavioural)
- **4.12.1 Overview**
- **4.12.2 Diagram elements**
- **4.12.3 Examples and modelling**
- **4.12.4 Using activity diagrams**

4.13 Use case diagrams (behavioural)
- **4.13.1 Overview**
- **4.13.2 Diagram elements**
- **4.13.3 Examples and modelling**
- **4.13.4 Using use case diagrams**
5 Physical systems, interfaces and constraints
5.1 Introduction 165
5.2 Connecting parts of the system 165
5.2.1 Flow ports and flow specifications 166
5.2.2 Standard ports and interfaces 168
5.3 Allocations 170
5.4 Parametric constraints 173
5.4.1 Relationships to blocks 173
5.4.2 Types of constraint 176
5.5 Putting it all together – the escapology problem 178
5.5.1 Requirements 179
5.5.2 Definition of the system 180
5.5.3 Definition of the constraints 183
5.5.4 Using the constraints 184
5.6 Conclusions 194

6 Process modelling with SysML
6.1 Introduction 195
6.1.1 Modelling processes using SysML 195
6.1.2 The process-modelling meta-model 196
6.1.3 The process meta-model – conceptual view 196
6.1.4 Consistency between views 200
6.1.5 Using the seven-views meta-model 202
6.2 Modelling life cycles 202
6.2.1 Introduction 202
6.2.2 The life cycle 203
6.2.3 The process library 205
6.2.4 Life-cycle models 205
6.2.5 Using life cycles and life-cycle models 210
6.2.6 Summary 210
6.3 Applying the seven views to a standard 210
6.3.1 Introduction 210
6.3.2 Introduction to standards 210
6.3.3 Process-structure view 213
6.3.4 Requirements view 215
6.3.5 Process-content view 217
6.3.6 Information view 217
List of contents

6.3.7 Using the views 219
6.3.8 Summary 219

6.4 Apply the seven views to a process 219
6.4.1 Introduction 219
6.4.2 The STUMPI life cycle 220
6.4.3 The STUMPI life-cycle model 220
6.4.4 The STUMPI process model 223
6.4.5 Stage iterations 228
6.4.6 Process behaviour 229
6.4.7 Information view 230

6.5 Conclusions 233

6.6 References 233

7 Modelling requirements 235
7.1 Introduction 235
7.2 Requirements engineering basics 236
7.2.1 Introduction 236
7.2.2 The ‘requirements stage’ 236
7.2.3 Capturing requirements 239
7.2.4 Requirements 241
7.2.5 Stakeholders 246
7.2.6 Summary 249

7.3 Using use case diagrams (usefully) 250

7.4 Context modelling 251
7.4.1 Types of context 251
7.4.2 Practical context modelling 256
7.4.3 Summary 260

7.5 Requirements modelling 260
7.5.1 Introduction 260
7.5.2 Modelling requirements 261
7.5.3 Ensuring consistency 267
7.5.4 Describing use cases 271

7.6 Modelling scenarios 273
7.6.1 Scenarios in the SysML 274
7.6.2 Example scenarios 274
7.6.3 Wrapping up scenarios 277

7.7 Documenting requirements 277
7.7.1 Overview 277
7.7.2 Populating the document 279
7.7.3 Finishing the document 280

7.8 Summary and conclusions 281

7.9 Further discussion 283
7.10 References 284
7.11 Further reading 284
Appendix A Summary of SysML notation

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1 Introduction</td>
<td>285</td>
</tr>
<tr>
<td>A.2 Structural diagrams</td>
<td>285</td>
</tr>
<tr>
<td>A.3 Behavioural diagrams</td>
<td>300</td>
</tr>
<tr>
<td>A.4 Cross-cutting concepts</td>
<td>315</td>
</tr>
<tr>
<td>A.5 Relationships between diagrams</td>
<td>321</td>
</tr>
</tbody>
</table>

Appendix B Using SysML concepts in UML

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.1 Introduction</td>
<td>325</td>
</tr>
<tr>
<td>B.2 Flow ports and flow specifications</td>
<td>325</td>
</tr>
<tr>
<td>B.3 Parametric constraints</td>
<td>327</td>
</tr>
<tr>
<td>B.4 Activity diagrams</td>
<td>329</td>
</tr>
<tr>
<td>B.5 Requirement diagrams</td>
<td>330</td>
</tr>
</tbody>
</table>

Index

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
</table>