Turbulence
An Introduction for Scientists and Engineers

P.A. Davidson
University of Cambridge

OXFORD UNIVERSITY PRESS
CONTENTS

Part I: The classical picture of turbulence 1

1 The ubiquitous nature of turbulence 3

1.1 The experiments of Taylor and Bénard 4
1.2 Flow over a cylinder 8
1.3 Reynolds' experiment 9
1.4 Common themes 10
1.5 The ubiquitous nature of turbulence 14
1.6 Different scales in a turbulent flow: a glimpse at the energy cascade of Kolmogorov and Richardson 17
1.7 The closure problem of turbulence 21
1.8 Is there a 'theory of turbulence'? 23
1.9 The interaction of theory, computation, and experiment 24

2 The equations of fluid mechanics 29

2.1 The Navier–Stokes equation 30
2.1.1 Newton's second law applied to a fluid 30
2.1.2 The convective derivative 33
2.1.3 Integral versions of the momentum equation 34
2.1.4 The rate of dissipation of energy in a viscous fluid 35
2.2 Relating pressure to velocity 38
2.3 Vorticity dynamics 39
2.3.1 Vorticity and angular momentum 39
2.3.2 The vorticity equation 43
2.3.3 Kelvin's theorem 48
2.3.4 Tracking vorticity distributions 50
2.4 A definition of turbulence 52

3 The origins and nature of turbulence 57

3.1 The nature of chaos 58
3.1.1 From non-linearity to chaos 59
3.1.2 More on bifurcations 63
3.1.3 The arrow of time 66
3.2 Some elementary properties of freely evolving turbulence 70
3.2.1 Various stages of development 72
3.2.2 The rate of destruction of energy in fully developed turbulence 76
3.2.3 How much does the turbulence remember? 80
3.2.4 The need for a statistical approach and different methods of taking averages 84
3.2.5 Velocity correlations, structure functions and the energy spectrum 88
3.2.6 Is the asymptotic state universal? Kolmogorov's theory 94
3.2.7 The probability distribution of the velocity field 98

4 Turbulent shear flows and simple closure models 107
4.1 The exchange of energy between the mean flow and the turbulence 109
 4.1.1 Reynolds stresses and the closure problem of turbulence 110
 4.1.2 The eddy-viscosity theories of Boussinesq and Prandtl 113
 4.1.3 The transfer of energy from the mean flow to the turbulence 117
 4.1.4 A glimpse at the k-ε model 122
4.2 Wall-bounded shear flows and the log-law of the wall 126
 4.2.1 Turbulent flow in a channel and the log-law of the wall 126
 4.2.2 Inactive motion—a problem for the log-law? 131
 4.2.3 Turbulence profiles in channel flow 135
 4.2.4 The log-law for a rough wall 136
 4.2.5 The structure of a turbulent boundary layer 137
 4.2.6 Coherent structures 139
 4.2.7 Spectra and structure functions near the wall 145
4.3 Free shear flows 147
 4.3.1 Planar jets and wakes 147
 4.3.2 The round jet 153
4.4 Homogeneous shear flow 157
 4.4.1 The governing equations 157
 4.4.2 The asymptotic state 161
4.5 Heat transfer in wall-bounded shear flows—the log-law revisited 162
 4.5.1 Turbulent heat transfer near a surface and the log-law for temperature 162
 4.5.2 The effect of stratification on the log-law—the atmospheric boundary layer 170
4.6 More on one-point closure models 176
4.6.1 A second look at the \(k-\varepsilon \) model 176
4.6.2 The Reynolds stress model 186
4.6.3 Large eddy simulation: a rival for one-point closures? 191

5 The phenomenology of Taylor, Richardson, and Kolmogorov 199
5.1 Richardson revisited 202
 5.1.1 Time and length-scales in turbulence 202
 5.1.2 The energy cascade pictured as the stretching of turbulent eddies 206
 5.1.3 The dynamic properties of turbulent eddies 214
5.2 Kolmogorov revisited 223
 5.2.1 Dynamics of the small scales 223
 5.2.2 Turbulence induced fluctuations of a passive scalar 234
5.3 The intensification of vorticity and the stretching of material lines 242
 5.3.1 Enstrophy production, the skewness factor, and scale invariance 242
 5.3.2 Sheets or tubes? 246
 5.3.3 Examples of concentrated vortex sheets and tubes 248
 5.3.4 Are there singularities in the vorticity field? 251
 5.3.5 The stretching of material line elements 256
 5.3.6 The interplay of the strain and vorticity fields 260
5.4 Turbulent diffusion by continuous movements 271
 5.4.1 Taylor diffusion of a single particle 273
 5.4.2 Richardson's law for the relative diffusion of two particles 275
 5.4.3 The influence of mean shear on turbulent dispersion 280
5.5 Why turbulence is never Gaussian 283
 5.5.1 The experimental evidence and its interpretation 284
 5.5.2 A glimpse at closure schemes which assume near-Gaussian statistics 288
5.6 Closure 289

Appendix: The statistical equations for a passive scalar in isotropic turbulence: Yaglom's four-thirds Law and Corrsin's integral 291
Part II: Freely decaying, homogeneous turbulence 297

6 Isotropic turbulence (In real space) 299

6.1 Introduction: exploring isotropic turbulence in real space 299

6.1.1 Deterministic cartoons versus statistical phenomenology 300

6.1.2 The strengths and weaknesses of Fourier space 304

6.1.3 An overview of this chapter 306

6.2 The governing equations of isotropic turbulence 318

6.2.1 Kinematics 318

6.2.2 Dynamics 331

6.2.3 Overcoming the closure problem 338

6.3 The dynamics of the large scales 343

6.3.1 Loitsyansky's integral 345

6.3.2 Kolmogorov's decay laws 346

6.3.3 Landau's angular momentum 347

6.3.4 Batchelor's pressure forces 351

6.3.5 The Saffman–Birkhoff spectrum 355

6.3.6 A reappraisal of the long-range pressure forces in $E \sim k^4$ turbulence 364

6.4 The characteristic signature of eddies of different shape 369

6.4.1 Townsend's model eddy 370

6.4.2 Other model eddies 375

6.5 Intermittency in the inertial-range eddies 376

6.5.1 A problem for Kolmogorov's theory? 377

6.5.2 The β-model of intermittency 380

6.5.3 The log-normal model of intermittency 382

6.6 The distribution of energy and vorticity across the different eddy sizes 386

6.6.1 A 'real-space' function which represents, approximately, the distribution of energy 387

6.6.2 Cascade dynamics in real space 400

6.6.3 A 'real-space' function which represents, approximately, the distribution of enstrophy 410

6.6.4 A footnote: can we capture Richardson's vision with our mathematical analysis? 412

Appendix: Turbulence composed of Townsend's model eddy 417

7 The role of numerical simulations 423

7.1 What is DNS or LES? 423

7.1.1 Direct numerical simulation 423
7.1.2 Large eddy simulations 427
7.2 On the dangers of periodicity 433
7.3 Structure in chaos 435
 7.3.1 Tubes, sheets, and cascades 436
 7.3.2 On the taxonomy of worms 438
 7.3.3 Structure and intermittency 441
 7.3.4 Shear flows 443
7.4 Postscript 445

8 Isotropic turbulence (in spectral space) 449
 8.1 Kinematics in spectral space 449
 8.1.1 The Fourier transform and its properties 451
 8.1.2 The Fourier transform as a filter 454
 8.1.3 The autocorrelation function 456
 8.1.4 The transform of the correlation tensor and the
 three-dimensional energy spectrum 460
 8.1.5 One-dimensional energy spectra 463
 8.1.6 Relating the energy spectrum to the
 second-order structure function 467
 8.1.7 A footnote: singularities in the spectrum arising
 from anisotropy 468
 8.1.8 Another footnote: the transform of the velocity
 field 470
 8.1.9 Definitely the last footnote: what do $E(k)$ and
 $E_i(k)$ really represent? 471
 8.2 Dynamics in spectral space 474
 8.2.1 An evolution equation for $E(k)$ 474
 8.2.2 Closure in spectral space 477
 8.2.3 Quasi-Normal type closure schemes
 (Part 2) 483

Part III: Special topics 495
9 The influence of rotation, stratification, and magnetic
 fields on turbulence 497
 9.1 The importance of body forces in geophysics and
 astrophysics 497
 9.2 The influence of rapid rotation and stable
 stratification 499
 9.2.1 The Coriolis force 499
 9.2.2 The Taylor–Proudman theorem 502
 9.2.3 Properties of inertial waves 504
 9.2.4 Turbulence in rapidly rotating systems 506
 9.2.5 Turbulence with moderate rotation 510
 9.2.6 From rotation to stratification (or from cigars to
 pancakes) 511
10.2 Coherent vortices: a problem for the classical theory 589
10.2.1 The evidence 589
10.2.2 The significance 592
10.3 The governing equations in statistical form 593
10.3.1 Correlation functions, structure functions, and the energy spectrum 594
10.3.2 The two-dimensional Karman–Howarth equation and its consequences 598
10.3.3 Loitsyansky's integral in two dimensions 604
10.4 Variational principles for predicting the final state in confined domains 607
10.4.1 Minimum enstrophy 608
10.4.2 Maximum entropy 610
10.5 Quasi-two-dimensional turbulence: bridging the gap with reality 611
10.5.1 The governing equations for shallow-water, rapidly rotating flow 611
10.5.2 Karman–Howarth equation for shallow-water, rapidly rotating turbulence 614

Epilogue 619

Appendices 623
Appendix 1 Vector identities and an introduction to tensor notation 623
A1.1 Vector identities and theorems 623
A1.2 An introduction to tensor notation 625
Appendix 2 The properties of isolated vortices: invariants, far-field properties, and long-range interactions 632
A2.1 The far-field velocity induced by an isolated eddy 632
A2.2 The pressure distribution in the far field 634
A2.3 Integral invariants of an isolated eddy 635
A2.4 Long-range interactions between eddies 638
Appendix 3 Long-range pressure forces in isotropic turbulence 641
A3.1 A dynamic equation for the pressure-induced, long-range correlations 641
A3.2 Experimental evidence for the strength of long-range pressure forces 643
Appendix 4 Hankel transforms and hypergeometric functions 646
A4.1 Hankel transforms 646
A4.2 Hypergeometric functions 647

Appendix 5 The kinematics of homogeneous, axisymmetric turbulence 649

Index 653