Modern Database Management
Fifth Edition

FRED R. McFADDEN
University of Colorado–Colorado Springs

JEFFREY A. HOFFER
University of Dayton

MARY B. PRESCOTT
University of South Florida

An imprint of Addison Wesley Longman, Inc.
Contents

Preface xix

Part I The Context of Database Management 1

PART I OVERVIEW 2

Chapter 1 The Database Environment 3

Learning Objectives 3

Introduction 3

Basic Concepts and Definitions 4

Data 4

Data versus Information 5

Metadata 5

Traditional File Processing Systems 7

File Processing Systems at Pine Valley Furniture Company 7

Disadvantages of File Processing Systems 8

Program-Data Dependence 8

Duplication of Data 9

Limited Data Sharing 9

Lengthy Development Times 9

Excessive Program Maintenance 10

The Database Approach 10

The Database Approach at Pine Valley Furniture Company 10

Enterprise Data Model 10

Relational Databases 11

Implementing the Relational Databases 13

A Database Application 14

The Range of Database Applications 15

Personal Computer Databases 15

Workgroup Databases 16

Department Databases 18

Enterprise Databases 19

Summary of Database Applications 20

Advantages of the Database Approach 20

Program-Data Independence 21

Minimal Data Redundancy 21
Moved to the second page
Alternative IS Development Approaches 48
The Role of CASE and a Repository 50
Managing the People Involved in Database Development 51
Three-Schema Architecture for Database Development 53
Three-Tiered Database Location Architecture 56
Developing a Database Application for Pine Valley Furniture 58
Matching User Needs to the Information Systems Architecture 59
Analyzing Database Requirements 61
Designing the Database 64
Using a Database 67
Administering a Database 69
Summary 70
Chapter Review 71
Key Terms 71
Review Questions 71
Problems and Exercises 72
Field Exercises 75
References 75
Further Reading 76
Project Case: Mountain View Community Hospital 77

Part II Database Analysis 83

Chapter 3 The Entity-Relationship Model 85
Learning Objectives 85
Introduction 85
The E-R Model 87
Sample E-R Diagram 87
E-R Model Notation 89
Entity-Relationship Model Constructs 89
Entities 89
Entity Type Versus Entity Instance 91
Entity Type Versus System Input, Output, or User 91
Strong Versus Weak Entity Types 92
Attributes 93
Simple Versus Composite Attributes 94
Single-Valued Versus Multivalued Attributes 95
Stored Versus Derived Attributes 95
Relationships 97
Basic Concepts and Definitions in Relationships 98
Attributes on Relationships 99
Associative Entities 99
Degree of a Relationship 101
Unary Relationship 101
Business Rules: An Overview 145
The Business Rules Paradigm 146
Scope of Business Rules 146
Classification of Business Rules 147
Business Rules: Defining Structural Constraints 148
Definitions 148
Facts 148
Derived Facts 149
Definitions for Data Model 150
Importance of Precise Definitions 150
Domain Constraints 153
Business Rules: Defining Operational Constraints 154
Declarative Approach to Business Rules 154
Constraint Specification Language 155
Constrained Objects and Constraining Objects 155
Sample Business Rules 156
Summary 159
Chapter Review 160
Key Terms 160
Review Questions 160
Problems and Exercises 161
Field Exercises 163
References 164
Further Reading 164

Project Case: Mountain View Community Hospital 165

Chapter 5
Object-Oriented Modeling 167
Learning Objectives 167
Introduction 167
The Unified Modeling Language 170
Object-Oriented Modeling 171
Representing Objects and Classes 171
Types of Operations 173
Representing Associations 174
Representing Association Classes 177
Representing Derived Attributes, Derived Associations, and Derived Roles 180
Representing Generalization 181
Interpreting Inheritance and Overriding 186
Representing Multiple Inheritance 187
Representing Aggregation 187
Business Rules 191
Object Modeling Example: Pine Valley Furniture Company 191
Summary 194
Chapter Review 195
Key Terms 195
Review Questions 196
Problems and Exercises 197
Part III Database Design 205

PART III OVERVIEW 206

Chapter 6 Logical Database Design and the Relational Model 207

Learning Objectives 207

Introduction 207

The Relational Data Model 208

Basic Definitions 208

Relational Data Structure 209

Relational Keys 209

Properties of Relations 210

Removing Multivalued Attributes from Tables 210

Example Database 211

Integrity Constraints 213

Domain Constraints 213

Entity Integrity 213

Referential Integrity 214

Operational Constraints 215

Creating Relational Tables 215

Well-Structured Relations 217

Transforming EER Diagrams into Relations 218

Step 1: Map Regular Entities 219

Composite Attributes 219

Multivalued Attributes 220

Step 2: Map Weak Entities 221

Step 3: Map Binary Relationships 222

Map Binary One-to-Many Relationships 222

Map Binary Many-to-Many Relationships 223

Map Binary One-to-One Relationships 224

Step 4: Map Associative Entities 224

Identifier Not Assigned 224

Identifier Assigned 225

Step 5: Map Unary Relationships 227

Unary One-to-Many Relationships 227

Unary Many-to-Many Relationships 228

Step 6: Map Ternary (and n-ary) Relationships 229

Step 7: Map Supertype/Subtype Relationships 231

Introduction to Normalization 232

Steps in Normalization 233

Functional Dependencies and Keys 235

Determinants 235

Candidate Keys 235

The Basic Normal Forms 237

First Normal Form 237

Second Normal Form 237
Chapter 7

Physical Database Design 253

Learning Objectives 253

Introduction 253

Physical Database Design Process 254

- **Data Volume and Usage Analysis** 255

Designing Fields 257

- **Choosing Data Types** 257
 - **Coding and Compression Techniques** 257
 - **Controlling Data Integrity** 259
 - **Handling Missing Data** 260

Designing Physical Records and Denormalization 260

- **Handling Fixed-Length Fields** 261
- **Handling Variable-Length Fields** 261
- **Denormalization** 261

Designing Physical Files 267

- **Pointer** 267
- **Access Methods** 267
- **File Organizations** 268
 - **Sequential File Organizations** 268
 - **Indexed File Organizations** 268
 - **Hashed File Organizations** 272
- **Summary of File Organizations** 272
- **Clustering Files** 272
- **Designing Controls for Files** 274

Using and Selecting Indexes 274

- **Creating a Primary Key Index** 274
- **Creating a Secondary Key Index** 275
- **When to Use Indexes** 275

RAID: Improving File Access Performance by Parallel Processing 276
Choosing Among RAID Levels 278
 RAID-0 278
 RAID-1 278
 RAID-2 281
 RAID-3 281
 RAID-4 281
 RAID-5 281
 RAID Performance 281
Designing Databases 282
 Choosing Database Architectures 282
Optimizing for Query Performance 285
Summary 286
Chapter Review 288
 Key Terms 288
 Review Questions 288
 Problems and Exercises 289
 Field Exercises 291
 References 292
 Further Reading 292
Project Case: Mountain View Community Hospital 293

Part IV Implementation 295

Part IV Overview 296

Chapter 8 Client/Server and Middleware 297
Learning Objectives 297
Introduction 297
Client/Server Architectures 298
 File Server Architectures 299
 Limitations of File Servers 300
 Database Server Architectures 301
Three-Tier Architectures 302
Partitioning an Application 304
Role of the Mainframe 305
Using Parallel Computer Architectures 306
 Multiprocessor Hardware Architectures 307
 Business Related Uses of SMP and MPP Architectures 308
Using Middleware 309
Establishing Client/Server Security 311
Client/Server Issues 312
Summary 314
Chapter Review 315
 Key Terms 315
 Review Questions 316
 Problems and Exercises 316
Chapter 9

SQL 323

Learning Objectives 323

Introduction 323

History of the SQL Standard 324

The Role of SQL in a Database Architecture 325

The SQL Environment 327

Defining a Database in SQL 331
 Generating SQL Database Definitions 332
 Creating Tables 332
 Creating Data Integrity Controls 334
 Changing Table Definitions 336
 Removing Tables 336
 Establishing Synonyms 336

Inserting, Updating, and Deleting Data 337
 Batch Input 337
 Deleting Database Contents 338
 Changing Database Contents 338

Internal Schema Definition in RDBMSs 338
 Creating Indexes 339

Processing Single Tables 340
 Clauses of the SELECT Statement 340
 Using Expressions 342
 Using Functions 343
 Using Wildcards 345
 Comparison Operators 345
 Using Boolean Operators 346
 Ranges 347
 Distinct 348
 IN and NOT IN Lists 350
 Sorting Results: The ORDER BY Clause 350
 Categorizing Results: The GROUP BY Clause 351
 Qualifying Results by Categories: The HAVING Clause 352

Processing Multiple Tables 354
 Equi-join 354
 Natural Join 355
 Outer Join 356
 Subqueries 358
 Correlated Subqueries 361

View Definitions 363

Ensuring Transaction Integrity 366

Data Dictionary Facilities 368

Triggers and Procedures 369

SQL3 371
Chapter 10
Database Access from Client Applications 381

Learning Objectives 381

Introduction 381

Survey of Desktop Database Technology 382

Using Query-by-Example 383

- The History and Importance of QBE 384
- QBE: The Basics 384
- Database Definition 386
- Relationships 387
- Building Queries Using QBE 388
- Single-Table Queries 388
- Selecting Qualified Records 390
- Multiple-Table Queries 390
- Self-Join 392
- Basing a Query on Another Query 393
- Access97 Query Types 394

Building a Client Application 396

- Application Menus 396
- Form Development 397
- Report Development 399

Using OLE, COM, and ActiveX Controls for Database Access 401

Embedding SQL in Programs 403

Using Visual Basic for Applications (VBA) in Client Applications 406

Building Internet Database Servers 407

Summary 409

Chapter Review 410

- Key Terms 410
- Review Questions 410
- Problems and Exercises 411
- Field Exercises 413
- References 414

Project Case: Mountain View Community Hospital 415

Chapter 11
Distributed Databases 417

Learning Objectives 417
<table>
<thead>
<tr>
<th>Introduction</th>
<th>417</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objectives and Trade-offs</td>
<td>421</td>
</tr>
<tr>
<td>Options for Distributing a Database</td>
<td>422</td>
</tr>
<tr>
<td>Data Replication</td>
<td>423</td>
</tr>
<tr>
<td>Snapshot Replication</td>
<td>424</td>
</tr>
<tr>
<td>Near Real-Time Replication</td>
<td>425</td>
</tr>
<tr>
<td>Pull Replication</td>
<td>425</td>
</tr>
<tr>
<td>Database Integrity with Replication</td>
<td>425</td>
</tr>
<tr>
<td>When to Use Replication</td>
<td>426</td>
</tr>
<tr>
<td>Horizontal Partitioning</td>
<td>426</td>
</tr>
<tr>
<td>Vertical Partitioning</td>
<td>427</td>
</tr>
<tr>
<td>Combinations of Operations</td>
<td>429</td>
</tr>
<tr>
<td>Selecting the Right Data Distribution Strategy</td>
<td>430</td>
</tr>
<tr>
<td>Distributed DBMS</td>
<td>431</td>
</tr>
<tr>
<td>Location Transparency</td>
<td>433</td>
</tr>
<tr>
<td>Replication Transparency</td>
<td>434</td>
</tr>
<tr>
<td>Failure Transparency</td>
<td>435</td>
</tr>
<tr>
<td>Commit Protocol</td>
<td>435</td>
</tr>
<tr>
<td>Concurrency Transparency</td>
<td>436</td>
</tr>
<tr>
<td>Timestamping</td>
<td>437</td>
</tr>
<tr>
<td>Query Optimization</td>
<td>437</td>
</tr>
<tr>
<td>Evolution of Distributed DBMS</td>
<td>440</td>
</tr>
<tr>
<td>Remote Unit of Work</td>
<td>440</td>
</tr>
<tr>
<td>Distributed Unit of Work</td>
<td>441</td>
</tr>
<tr>
<td>Distributed Request</td>
<td>441</td>
</tr>
<tr>
<td>Distributed DBMS Products</td>
<td>442</td>
</tr>
<tr>
<td>IBM Corporation and DB2</td>
<td>442</td>
</tr>
<tr>
<td>Sybase Inc.</td>
<td>443</td>
</tr>
<tr>
<td>Oracle Corporation</td>
<td>444</td>
</tr>
<tr>
<td>Computer Associates International and Ingres</td>
<td>444</td>
</tr>
<tr>
<td>Microsoft Corporation and SQL Server</td>
<td>445</td>
</tr>
<tr>
<td>Summary</td>
<td>445</td>
</tr>
<tr>
<td>Chapter Review</td>
<td>447</td>
</tr>
<tr>
<td>Key Terms</td>
<td>447</td>
</tr>
<tr>
<td>Review Questions</td>
<td>447</td>
</tr>
<tr>
<td>Problems and Exercises</td>
<td>448</td>
</tr>
<tr>
<td>Field Exercises</td>
<td>450</td>
</tr>
<tr>
<td>References</td>
<td>451</td>
</tr>
<tr>
<td>Project Case: Mountain View Community Hospital</td>
<td>452</td>
</tr>
</tbody>
</table>

Chapter 12

Object-Oriented Database Development | 453

Learning Objectives | 453

Introduction | 453

Object Definition Language | 454

Defining a Class | 454
Defining an Attribute | 455
Defining User Structures | 456
Defining Operations | 456
Defining a Range for an Attribute | 457
Defining Relationships | 457
Defining an Attribute with an Object Identifier as Its Value | 459
Defining Many-to-Many Relationships, Keys, and Multivalued Attributes 460
Defining Generalization 462
Defining an Abstract Class 464
Defining Other User Structures 464
OODB Design for Pine Valley Furniture Company 466
Creating Object Instances 467
Object Query Language 468
 Basic Retrieval Command 469
 Including Operations in Select Clause 469
 Finding Distinct Values 470
 Querying Multiple Classes 470
 Writing Subqueries 471
 Calculating Summary Values 471
 Calculating Group Summary Values 472
 Qualifying Groups 472
 Using a Set in a Query 473
Current ODBMS Products and Their Applications 474
Summary 474
Chapter Review 475
 Key Terms 475
 Review Questions 476
 Problems and Exercises 476
 Field Exercises 477
 References 478
Project Case: Mountain View Community Hospital 479

Part V Data Administration 481

Part V Overview 482

Chapter 13 Data and Database Administration 483
Learning Objectives 483
Introduction 483
 The Changing Roles of Data and Database Administrators 484
 Data Administration 484
 Database Administration 485
 Changing Approaches to Data Administration 488
Modeling Enterprise Data 490
Planning for Databases 491
Managing Data Security 492
 Threats to Data Security 492
 Views 494
 Authorization Rules 495
 User-Defined Procedures 497
 Encryption 497
 Authentication Schemes 497
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backing Up Databases</td>
<td>498</td>
</tr>
<tr>
<td>Basic Recovery Facilities</td>
<td>499</td>
</tr>
<tr>
<td>Backup Facilities</td>
<td>499</td>
</tr>
<tr>
<td>Journalizing Facilities</td>
<td>499</td>
</tr>
<tr>
<td>Checkpoint Facility</td>
<td>500</td>
</tr>
<tr>
<td>Recovery Manager</td>
<td>500</td>
</tr>
<tr>
<td>Recovery and Restart Procedures</td>
<td>500</td>
</tr>
<tr>
<td>Switch</td>
<td>501</td>
</tr>
<tr>
<td>Restore/Rerun</td>
<td>501</td>
</tr>
<tr>
<td>Transaction Integrity</td>
<td>501</td>
</tr>
<tr>
<td>Backward Recovery</td>
<td>502</td>
</tr>
<tr>
<td>Forward Recovery</td>
<td>503</td>
</tr>
<tr>
<td>Types of Database Failure</td>
<td>503</td>
</tr>
<tr>
<td>Aborted Transactions</td>
<td>503</td>
</tr>
<tr>
<td>Incorrect Data</td>
<td>504</td>
</tr>
<tr>
<td>System Failure</td>
<td>504</td>
</tr>
<tr>
<td>Database Destruction</td>
<td>505</td>
</tr>
<tr>
<td>Controlling Concurrent Access</td>
<td>505</td>
</tr>
<tr>
<td>The Problem of Lost Updates</td>
<td>505</td>
</tr>
<tr>
<td>Serializability</td>
<td>506</td>
</tr>
<tr>
<td>Locking Mechanisms</td>
<td>507</td>
</tr>
<tr>
<td>Locking Level</td>
<td>507</td>
</tr>
<tr>
<td>Types of Locks</td>
<td>508</td>
</tr>
<tr>
<td>Deadlock</td>
<td>508</td>
</tr>
<tr>
<td>Managing Deadlock</td>
<td>510</td>
</tr>
<tr>
<td>Versioning</td>
<td>510</td>
</tr>
<tr>
<td>Managing Data Quality</td>
<td>511</td>
</tr>
<tr>
<td>Security Policy and Disaster Recovery</td>
<td>512</td>
</tr>
<tr>
<td>Personnel Controls</td>
<td>513</td>
</tr>
<tr>
<td>Physical Access Controls</td>
<td>513</td>
</tr>
<tr>
<td>Maintenance Controls</td>
<td>514</td>
</tr>
<tr>
<td>Data Protection and Privacy</td>
<td>514</td>
</tr>
<tr>
<td>Data Dictionaries and Repositories</td>
<td>514</td>
</tr>
<tr>
<td>Repositories</td>
<td>515</td>
</tr>
<tr>
<td>Overview of Tuning the Database for Performance</td>
<td>516</td>
</tr>
<tr>
<td>Installation of the DBMS</td>
<td>517</td>
</tr>
<tr>
<td>Memory Usage</td>
<td>517</td>
</tr>
<tr>
<td>Input/Output (I/O) Contention</td>
<td>518</td>
</tr>
<tr>
<td>CPU Usage</td>
<td>518</td>
</tr>
<tr>
<td>Application Tuning</td>
<td>518</td>
</tr>
<tr>
<td>Summary</td>
<td>519</td>
</tr>
<tr>
<td>Chapter Review</td>
<td>520</td>
</tr>
<tr>
<td>Key Terms</td>
<td>520</td>
</tr>
<tr>
<td>Review Questions</td>
<td>520</td>
</tr>
<tr>
<td>Problems and Exercises</td>
<td>522</td>
</tr>
<tr>
<td>Field Exercises</td>
<td>525</td>
</tr>
<tr>
<td>References</td>
<td>525</td>
</tr>
<tr>
<td>Project Case: Mountain View Community Hospital</td>
<td>527</td>
</tr>
</tbody>
</table>

Chapter 14: Data Warehouse

Learning Objectives: 529
Introduction 529

Basic Concepts of Data Warehousing 531
 A Brief History 531
 The Need for Data Warehousing 532
 Need for a Company-Wide View 532
 Need to Separate Operational and Information Systems 533

Data Warehouse Architectures 534
 Generic Two-Level Architecture 534
 An Expanded Data Warehouse Architecture 534
 Three-Layer Data Architecture 537
 Role of the Enterprise Data Model 537
 Role of Metadata 537

Some Data Characteristics 538
 Status versus Event Data 538
 Transient versus Periodic Data 539
 An Example of Transient and Periodic Data 540
 Transient Data 541
 Periodic Data 542

The Reconciled Data Layer 542
 Characteristics of Reconciled Data 543
 The Data Reconciliation Process 543
 Capture 544
 Scrub 544
 Load and Index 545

Data Transformation 546
 Data Transformation Functions 547
 Record-Level Functions 547
 Field-Level Functions 548
 More Complex Transformations 550
 Tools to Support Data Reconciliation 550
 Data Quality Tools 550
 Data Conversion Tools 550
 Data-Cleansing Tools 550

The Derived Data Layer 551
 Characteristics of Derived Data 551
 The Star Schema 552
 Fact Tables and Dimension Tables 552
 Example Star Schema 552
 Grain of a Fact Table 554
 Size of the Fact Table 554
 Variations of the Star Schema 556
 Multiple Fact Tables 556
 Snowflake Schema 556
 Proprietary Databases 557

Independent versus Dependent Data Marts 558

The User Interface 559
 Role of Metadata 559
 On-Line Analytical Processing (OLAP) Tools 560
 Slicing a Cube 561
 Drill-Down 561
Data-Mining Tools 562
 Data-Mining Techniques 562
 Data-Mining Applications 562
 Data Visualization 563

Summary 563

Chapter Review 565
 Key Terms 565
 Review Questions 565
 Problems and Exercises 566
 Field Exercises 568
 References 568
 Further Reading 569

Project Case: Mountain View Community Hospital 570

Appendix A 573
 Object-Relational Databases
 Basic Concepts and Definitions 573
 Features of an ORDBMS 574
 Complex Data Types 574
 Enhanced SQL 575
 A Simple Example 575
 Content Addressing 576
 Advantages of the Object-Relational Approach 576
 ORDBMS Vendors and Products 577
 References 577

Appendix B 579
 Advanced Normal Forms
 Boyce-Codd Normal Form 579
 Anomalies in STUDENT_ADVISOR 579
 Definition of Boyce-Codd Normal Form (BCNF) 580
 Converting a Relation to BCNF 580
 Fourth Normal Form 582
 Multivalued Dependencies 583
 Higher Normal Forms 584
 References 584

Appendix C 585
 Data Structures
 Pointers 585
 Data Structure Building Blocks 587
 Linear Data Structures 589
 Stacks 590
 Queues 590
 Sorted Lists 591
 Multilists 593
 Hazards of Chain Structures 594
 Trees 594
 Balanced Trees 595
 References 598
Glossary of Terms 599
Glossary of Acronyms 611
Index 613