PHYSICS OF MATERIALS

Yves Quéré

École Polytechnique, Paris-Palaiseau, France Académie des Sciences, Paris, France

Translated by

Stephen S. Wilson, FIL

With the support of the French Ministry of Culture and of the École Polytechnique

Australia•Canada•China•France•Germany•India•Japan•Luxembourg•Malaysia The Netherlands•Russia•Singapore•Switzerland•Thailand

CONTENTS

PREFACE		ix
CHAI	PTER I	
MAD	ELUNG OR ROCK SALT	1
1.	Coulomb attraction	2
2.	Interionic repulsion	3
3.	Van der Waals attraction	5
4.		7
5.	Compressibility of halides	8
CHAI	PTER II	
DRU	DE OR 'ARCHAEO-METAL'	11
1.	The situation in 1900	11
2.	Drude's model	14
3.	Where Drude's model goes wrong	29
	PTER III	
	MERFELD OR 'GOOD' METAL	31
	Free electrons in one dimension	31
2.	Free electrons in three dimensions	43
3.	Brushing the dust off Drude	53
	PTER IV	
	E PROPERTIES OF 'GOOD' METALS	67
1.	Cohesion of the 'good' metal	67
2.	A 'good' metal: aluminium	76
	PTER V	01
	KINGS: ORDER OR DISORDER	83 83
2.	Amorphous packings	95
3.	Crystalline packings	109
3.	Neither glasses nor crystals	109
	PTER VI	
BLO	CH AND BRILLOUIN OR THE ELECTRONS IN A CRYSTAL	115
1.	The potential taken as a perturbation	116
2.	Bloch functions	122
3.	Brillouin planes and zones	124
4.	Forbidden bands (continued)	126
5.	Energy gap	129
6.	Dynamics of electrons	138
7	Rloch Anderson Mott et al	147

vi	CONTENTS

CHAPTER VII		
SURFACES AND POINT DEFECTS		
1. Free surfaces	155 155	
2. Point defects	161	
2 2 0 11 0 11 0 11 0 11 0 11 0 11 0 11		
CHAPTER VIII		
DIFFUSION AND PRECIPITATION	173	
1. Self-diffusion	173	
2. Heterodiffusion	181	
3. Precipitation	186	
CHAPTER IX		
DISLOCATIONS AND BOUNDARIES	201	
1. Genesis of a concept	201	
2. Elastic model of dislocations	205	
3. Dislocations in crystals	212	
4. Sub-boundaries and boundaries	217	
CHAPTER X		
DEFORMATION AND FRACTURE	223	
1. Generalities	223	
2. Deformation at low temperatures	226	
3. Deformation at high temperatures	239	
4. Brittle fracture	246	
ANNEX 1		
DIFFRACTION BY A CRYSTAL	255	
ANNEX 2		
BLOCH'S THEOREM	259	
ANNEX 3		
BOLTZMANN'S EQUATION. ELECTRICAL CONDUCTIVITY	261	
1. Generalities	261	
2. Electrical conductivity of free electrons	262	
3. Electrical conductivity of almost-free electrons	264	
•		
ANNEX 4	A	
TIGHT BINDING METHOD	267	
1. Approximate form of the Bloch functions	267	
2. Linear combinations of atomic orbitals (LCAO)	268	
3. Energies of LCAO	269	
ANNEX 5		
BURGERS VECTOR	271	
1. Definitions	271	
2. Nodes	272	

CONTENTS	vii
PROBLEMS WITH SOLUTIONS	275
PROBLEM 1 LITHIUM PLATELETS	277
PROBLEM 2 INSTABILITY OF CAROTENE (OR WHY CARROTS ARE RED)	281
PROBLEM 3 ONE-DIMENSIONAL A-B COMPOUNDS	289
PROBLEM 4 EXTENDED STATES AND LOCALISED STATES ON A CHAIN	295
PROBLEM 5 INSULATOR-METAL TRANSITION (FROM HYDROGEN TO DOPED SEMICONDUCTORS)	305
PROBLEM 6 BAND STRUCTURE OF A SUPERCONDUCTING OXIDE	325
PROBLEM 7 MAGNETIC PROPERTIES OF A CRYSTAL	339
PROBLEM 8 FERROELECTRICITY OF BARIUM TITANATE	345
PROBLEM 9 ORDER AND DISORDER IN ALLOYS	355
PROBLEM 10 CRYSTALLINE SURFACES AND STEPS	365
PROBLEM 11 COLOUR CENTRES IN IONIC CRYSTALS	381
PROBLEM 12 DIFFUSION OF HYDROGEN ON INTERSTELLAR DUSTS	391
PROBLEM 13 DIFFUSION IN THE PRESENCE OF A FORCE (FROM PERRIN GRANULES TO COTTRELL CLOUDS)	399
PROBLEM 14 OXIDATION OF METALS	409
PROBLEM 15 SNOEK EFFECT AND MARTENSITIC STEELS	415

viii	CONTENTS
PROBLEM 16	
SWELLING OF NUCLEAR FUELS	427
PROBLEM 17	
EVOLUTION OF IRRADIATED STEELS	439
PROBLEM 18	
ATOMIC VIBRATIONS IN SOLIDS	453
PROBLEM 19	
STRUCTURE AND ELASTICITY OF POLYMERS	461
COMPLEMENTARY READING	471
SUBJECT INDEX	473
AUTHOR INDEX	479
TABLE OF CONSTANTS	483
ENERGY EQUIVALENCIES	483