The Essential Physics of Medical Imaging

FOURTH EDITION

JERROLD T. BUSHBERG, PhD
Clinical Professor of Radiology and Radiation Oncology
University of California, Davis
Sacramento, California

J. ANTHONY SEIBERT, PhD
Professor of Radiology
University of California, Davis
Sacramento, California

EDWIN M. LEIDHOLDT Jr, PhD
Clinical Associate Professor of Radiology
University of California, Davis
Sacramento, California

JOHN M. BOONE, PhD
Professor of Radiology and Biomedical Engineering
University of California, Davis
Sacramento, California

Wolters Kluwer
Philadelphia • Baltimore • New York • London
Buenos Aires • Hong Kong • Sydney • Tokyo
Contents

Preface to the Fourth Edition v
Foreword vii
Authors viii
Contributors xi
Acknowledgments xii

Section I: Basic Concepts ... 1
1 Introduction to Medical Imaging .. 3
 1.1 The Modalities 3
 1.2 Digital Imaging Basics 17
 1.3 Image Properties 18
2 Radiation and the Atom ... 21
 2.1 Classical Electromagnetism 21
 2.2 Electromagnetic Radiation 22
 2.3 Behavior of Energy at the Atomic Scale: One of the Most
 Important Discoveries in the History of Science 25
 2.4 Ionizing and Non-Ionizing Radiation 28
 2.5 Particulate Radiation 29
 2.6 Mass-Energy Equivalence 30
 2.7 Structure of the Atom 31
 2.8 Radiation from Electron Transitions 33
 2.9 The Atomic Nucleus 35
 2.10 Nuclear Stability and Radioactivity 37
 2.11 Nuclear Binding Energy and Mass Defect 39
3 Interaction of Radiation with Matter ... 42
 3.1 Particle Interactions 42
 3.2 X-ray and Gamma (γ-ray) Interactions 48
 3.3 Attenuation of X-rays and γ-rays 54
 3.4 Absorption of Energy from X-rays and γ-rays 61
 3.5 Imparted Energy, Equivalent Dose, and Effective Dose 65
 3.6 Summary 70
4 Image Quality ... 72
 4.1 Spatial Resolution 72
 4.2 Contrast Resolution 86
 4.3 Noise and Noise Texture 89
 4.4 Ratio Measures of Image Quality 98
 4.5 Image Quality Measures Based on Visual Performance 102
5 Medical Imaging Informatics ... 109
 5.1 Ontologies, Standards, Profiles 109
 5.2 Computers and Networking 115
 5.3 Picture Archiving and Communications System 125
 5.4 Lifecycle of a Radiology Exam 151
 5.5 Radiology from Outside the Department 158
 5.6 Security and Privacy 160
 5.7 “Big Data” and Data Plumbing 167
 5.8 Algorithms for Image and Non-Image Analytics 169
 5.9 The Business of Informatics 175
 5.10 Beyond Imaging Informatics 178

Section II: Diagnostic Radiology .. 183
6 X-ray Production, Tubes, and Generators 185
 6.1 Production of X-rays 185
12 Magnetic Resonance Basics: Magnetic Fields, Nuclear Magnetic Characteristics, Tissue Contrast, Image Acquisition 442
 12.1 Magnetism, Magnetic Fields, and Magnetic Properties of Materials 443
 12.2 MR System 448
 12.3 Magnetic Resonance Signal 453
 12.4 Magnetization Properties of Tissues 457
 12.5 Basic Acquisition Parameters 461
 12.6 Basic Pulse Sequences 462
 12.7 MR Signal Localization 477
 12.8 "k-Space" Data Acquisition and Image Reconstruction 484
 12.9 MR Image Characteristics 488
 12.10 Summary 492

13 Magnetic Resonance Imaging: Advanced Image Acquisition Methods, Artifacts, Spectroscopy, Quality Control, Siting, Bioeffects, and Safety ... 494
 13.1 Image Acquisition Time 494
 13.2 Fast Imaging Techniques 496
 13.3 Signal from Flow 507
 13.4 Perfusion and Diffusion Contrast Imaging 513
 13.5 Other Advanced Techniques 520
 13.6 MR Artifacts 526
 13.7 Magnet Siting and Quality Control 538
 13.8 MR Bioeffects and Safety 541

14 Ultrasound ... 548
 14.1 Characteristics of Sound 548
 14.2 Interactions of Ultrasound with Tissues 553
 14.3 Ultrasound Transducers 558
 14.4 Ultrasound Beam Properties 565
 14.5 Image Data Acquisition and Processing 573
 14.6 Image Acquisition 581
 14.7 Image Quality, Storage, and Measurements 592
 14.8 Doppler Ultrasound 595
 14.9 Ultrasound Artifacts 607
 14.10 Ultrasound System Performance and Quality Assurance 618
 14.11 Acoustic Power and Bioeffects 622

Section III: Nuclear Medicine .. 627

15 Radioactivity and Nuclear Transformation 629
 15.1 Radionuclide Decay Terms and Relationships 630
 15.2 Nuclear Transformation 634

16 Radionuclide Production, Radiopharmaceuticals, and Internal Dosimetry ... 645
 16.1 Radionuclide Production 645
 16.2 Radiopharmaceuticals 659
 16.3 Internal Dosimetry 669
 16.4 Regulatory Issues 682

17 Radiation Detection and Measurement .. 687
 17.1 Types of Detectors and Basic Principles 687
 17.2 Gas-Filled Detectors 691
 17.3 Scintillation Detectors 697
 17.4 Semiconductor Detectors 704
 17.5 Pulse Height Spectroscopy 707
 17.6 Non-Imaging Detector Applications 715
 17.7 Counting Statistics 723

18 Nuclear Imaging—The Gamma Camera ... 731
 18.1 Planar Nuclear Imaging: The Anger Scintillation Camera 732
 18.2 Computers in Nuclear Imaging 756
 18.3 Summary 762
Section IV: Radiation Biology and Protection ... 819

20 Radiation Biology ... 821

20.1 Overview 821
20.2 Determinants and Classification of the Biologic Response of Radiation 821
20.3 Interaction of Radiation with Cells and Tissue 822
20.4 Molecular and Cellular Response to Radiation 826
20.5 Tissue and Organ System Response to Radiation 847
20.6 Whole-Body Response to Radiation: The Acute Radiation Syndrome 857
20.7 Radiation-Induced Carcinogenesis 865
20.8 Hereditary Effects of Radiation Exposure 903
20.9 Radiation Effects In Utero ... 905
20.10 Radiation Risk Communications 914

21 Radiation Protection ... 924

21.1 Sources of Exposure to Ionizing Radiation 924
21.2 Personnel Dosimetry ... 931
21.3 Radiation Detection Equipment in Radiation Safety 939
21.4 Fundamental Principles and Methods of Exposure Control 940
21.5 Structural Shielding of Imaging Facilities 944
21.6 Radiation Protection in Diagnostic and Interventional X-ray Imaging 957
21.7 Radiation Protection in Nuclear Medicine 975
21.8 Regulatory Agencies and Radiation Exposure Limits 989
21.9 Prevention of Errors ... 994
21.10 Management of Radiation Safety Programs 997
21.11 Imaging of Pregnant and Potentially Pregnant Patients 999
21.12 Medical Emergencies Involving Ionizing Radiation 1000

Section V: Appendices ... 1011

A Fundamental Principles of Physics .. 1013
B SI and Derived Units, Physical Constants, Prefixes, Definitions and Conversion Factors, Geometry, and Roman and Greek Symbols Used in Medical Physics 1029
C Radiologic Data for Elements 1–100 1039
D Mass Attenuation Coefficients .. 1044
E Effective Doses, Organ Doses, and Fetal Doses from Medical Imaging Procedures ... 1053
F Radiopharmaceutical Characteristics and Dosimetry 1061
G Convolution and Fourier Transforms 1122
H Radiation Dose: Perspectives and Comparisons 1133
I Radionuclide Therapy Home Care Guidelines 1143

Index 1147