Contents

Useful Equations xi

1. The Reduction Potential and Electrode Kinetics 1
 1.1 The Reduction Potential 1
 1.2 Electrode Kinetics 12
 References 24

2. The Cyclic Voltammetric Experiment 27
 2.1 An Overview 28
 2.2 The Electrochemical Cell 30
 2.3 Electrochemical Mechanisms: E&C Notation 35
 2.4 Distortions of the Faradaic Response 56
 2.5 Microelectrodes and Fast Scan Voltammetry 59
 2.6 Potential Step Methods and Cyclic Voltammetry 60
 2.7 Construction of a Fast Potentiostat 64
 2.8 Determination of the Number of Electrons 68
 References 68

3. A Survey of Electrochemical Mechanisms 71
 3.1 The CE Mechanism 72
 3.2 Multielectron Transfer 75
 3.3 Protonations at Equilibrium 77
CONTENTS

3.4 Catalytic Mechanisms 80
3.5 The Reduction of Nitrobenzoic Acid 89
3.6 Reduction of the Nitrosonium Cation and Its Complexes 92
3.7 Reactivity of 17-, 18-, and 19-Electron Tungsten Complexes 95
3.8 Mechanisms Involving Adsorption 97
References 102

4. The Simulation of Electrochemical Experiments 105
4.1 The Discretized Diffusion Equation 105
4.2 Evaluation of the Boundary Conditions 108
4.3 Dimensionless Units 109
4.4 Solution Chemical Kinetics 110
4.5 A Sample Simulation Program 110
References 114

5. CVSIM: A General Program for the Simulation of Cyclic Voltammetry Experiments 115
5.1 An Overview of CVSIM 115
5.2 Extensions of the Simulation Method 117
5.3 Accuracy of Simulations 120
5.4 Installation and Use of CVSIM and CVGRAF 123
5.5 Examples 125
References 135

6. CVFIT: Simplex Data Analysis with CVSIM 137
6.1 CVFIT: Simplex Data Analysis with CVSIM 137
6.2 Instructions for the use of CVFIT 138
6.3 A Prototype Analysis: The EC Mechanism 139
6.4 Some Final Comments on Simulation Analysis 145
References 148

Appendix: Summary of Instructions for CVSIM, CVGRAF, CVFIT, and DSTEP 149

Index 153