Nonequilibrium Phenomena in Polyatomic Gases

VOLUME 1
DILUTE GASES

Frederick R. W. McCourt
Professor in the Departments of Chemistry and Applied Mathematics
University of Waterloo

Jan J. M. Beenakker
Professor in the Department of Physics
University of Leiden

Walter E. Köhler
Senior Scientist, Siemens Research Laboratories, Erlangen

and

Ivan Kuščer
Professor in the Department of Physics
University of Ljubljana

CLARENDON PRESS • OXFORD
1990
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5 The Waldmann–Snider (WS) equation</td>
<td>166</td>
</tr>
<tr>
<td>4.5.1 Quantum statistical operators and Wigner distributions</td>
<td>168</td>
</tr>
<tr>
<td>4.5.2 The gain term</td>
<td>171</td>
</tr>
<tr>
<td>4.5.3 Extension of the optical theorem to molecular collisions</td>
<td>174</td>
</tr>
<tr>
<td>4.5.4 The loss term</td>
<td>178</td>
</tr>
<tr>
<td>4.5.5 Identical particle effects</td>
<td>180</td>
</tr>
<tr>
<td>4.5.6 Special cases of the WS equation</td>
<td>183</td>
</tr>
<tr>
<td>4.5.7 The generalized WS equation</td>
<td>185</td>
</tr>
<tr>
<td>4.6 Equations of change</td>
<td>188</td>
</tr>
<tr>
<td>4.6.1 Conservation equations</td>
<td>189</td>
</tr>
<tr>
<td>4.6.2 Entropy production</td>
<td>191</td>
</tr>
<tr>
<td>4.6.3 The equilibrium state</td>
<td>194</td>
</tr>
<tr>
<td>4.7 Linearization of the generalized Boltzmann equation</td>
<td>195</td>
</tr>
<tr>
<td>4.7.1 Linearization about a local Maxwellian</td>
<td>195</td>
</tr>
<tr>
<td>4.7.2 Linearization about thermal equilibrium</td>
<td>197</td>
</tr>
<tr>
<td>4.7.3 Properties of the linearized collision operator</td>
<td>197</td>
</tr>
<tr>
<td>4.7.4 Linearization of the generalized WS equation</td>
<td>202</td>
</tr>
<tr>
<td>4.8 Extension to gas mixtures</td>
<td>204</td>
</tr>
<tr>
<td>4.8.1 Conservation laws</td>
<td>205</td>
</tr>
<tr>
<td>4.8.2 Entropy production and equilibrium</td>
<td>206</td>
</tr>
<tr>
<td>4.8.3 Linearization of the mixture equation</td>
<td>207</td>
</tr>
<tr>
<td>4.9 Quasiclassical limit of the linearized WS equation</td>
<td>211</td>
</tr>
<tr>
<td>References</td>
<td>217</td>
</tr>
<tr>
<td>5. SOLUTION OF GENERALIZED BOLTZMANN EQUATIONS</td>
<td>221</td>
</tr>
<tr>
<td>5.1 Transport coefficients for polyatomic gases</td>
<td>221</td>
</tr>
<tr>
<td>5.1.1 Formal solution of the generalized Boltzmann equation</td>
<td>225</td>
</tr>
<tr>
<td>5.1.2 The viscosity scheme: symmetry-adapted coefficients</td>
<td>227</td>
</tr>
<tr>
<td>5.1.3 The thermal conductivity scheme</td>
<td>230</td>
</tr>
<tr>
<td>5.2 Matrix approximations the inverse operator $\tilde{\mathbf{R}}^{-1}$</td>
<td>233</td>
</tr>
<tr>
<td>5.2.1 Basis tensors and effective cross sections</td>
<td>233</td>
</tr>
<tr>
<td>5.2.2 Approximations to field-effects for a pure gas</td>
<td>241</td>
</tr>
<tr>
<td>5.2.3 Kinetic expressions for the $L^{\alpha\beta}$ in gas mixtures</td>
<td>247</td>
</tr>
<tr>
<td>5.3 Moment method for polyatomic gases</td>
<td>251</td>
</tr>
<tr>
<td>5.4 Multilevel description of transport phenomena</td>
<td>258</td>
</tr>
<tr>
<td>5.5 Kinetic models</td>
<td>261</td>
</tr>
<tr>
<td>References</td>
<td>266</td>
</tr>
<tr>
<td>6. FIELD-FREE TRANSPORT PROPERTIES</td>
<td>269</td>
</tr>
<tr>
<td>6.1 The shear viscosity of pure polyatomic gases</td>
<td>269</td>
</tr>
<tr>
<td>6.2 The volume viscosity of pure polyatomic gases</td>
<td>272</td>
</tr>
<tr>
<td>6.2.1 Volume viscosity and temperature relaxation</td>
<td>274</td>
</tr>
<tr>
<td>6.2.2 The role of volume viscosity in sound absorption</td>
<td>276</td>
</tr>
<tr>
<td>6.3 The thermal conductivity of pure polyatomic gases</td>
<td>285</td>
</tr>
</tbody>
</table>
6.3.1 The two-flux approach 286
6.3.2 The total energy-flux approach 288
6.3.3 Higher approximations and polarization contributions 291
6.4 The shear viscosity for binary mixtures 292
6.5 Diffusion and thermal diffusion in binary mixtures 294
 6.5.1 Approximations for the diffusion coefficient 295
 6.5.2 Approximations for the thermal diffusion coefficient 296
 6.5.3 Thermal diffusion in isotopic systems 297
6.6 Thermal conductivity of binary mixtures 298
 6.6.1 Two-flux approach 299
 6.6.2 Total-energy flux approach 301
6.7 The volume viscosity for binary mixtures 302
6.8 Optical determination of the nonequilibrium distribution 305
References 310

7. EFFECT OF FIELDS ON TRANSPORT PHENOMENA 313
7.1 Momentum transport: viscous flow in an external field 313
 7.1.1 Viscomagnetic effects in gases of linear molecules 321
 7.1.2 Viscomagnetic effects in binary mixtures 325
 7.1.3 Simplified theory of viscomagnetic effects in paramagnetic gases 326
 7.1.4 Viscomagnetic effects in symmetric top molecular gases 330
 7.1.5 Viscoelectric effects in polar gases 332
 7.1.6 Measurement of longitudinal viscomagnetic effects 333
 7.1.7 Measurement of transverse viscomagnetic effects 336
 7.1.8 Measurement of viscoelectric effects 337
 7.1.9 Measurement of volume viscosity and cross effect coefficients 338
 7.1.10 Features of viscomagnetic effects and their analysis 339
7.2 Field-effects in energy and particle transport 345
 7.2.1 Thermomagnetic effects in gases of linear molecules 345
 7.2.2 Thermomagnetic effects in binary mixtures 348
 7.2.3 Extension of the theory to polar gases 354
 7.2.4 Exact treatment of the leading polarization in heat and particle flow 355
 7.2.5 Measurement of longitudinal thermomagnetic effects 359
 7.2.6 Measurement of longitudinal thermolectric effects 361
 7.2.7 Measurement of transverse thermomagnetic effects 366
 7.2.8 Features of thermomagnetic effects and their analysis 366
 7.2.9 Features of thermolectric effects and their analysis 371
 7.2.10 Thermal diffusion field-effects 374
 7.2.11 The Dufour effect 380
 7.2.12 Diffusion field-effects 383
 7.2.13 Conclusions on polarizations
8. ANOMALOUS FIELD-EFFECTS

8.1 The coupling of spin and rotational angular momenta
8.2 The basis for anomalous field-effects
8.3 Senftleben effects in paramagnetic gases
 8.3.1 Senftleben effects in NO$_2$
 8.3.2 Senftleben effects in O$_2$
8.4 Nuclear spin-decoupling effects in HD
 8.4.1 Calculated shear viscosity effects in HD
 8.4.2 Comparison with experiment
8.5 Anomalous electric field-effects

References

9. OBSERVABLE NONEQUILIBRIUM POLARIZATIONS

9.1 Phenomenological description
9.2 Kinetic theory of nonequilibrium polarizations
9.3 Flow birefringence
 9.3.1 Theory for a gas of linear molecules
 9.3.2 Extension to symmetric top molecular gases
 9.3.3 The experimental method
 9.3.4 Experimental results
 9.3.5 The scalar factor in O$_2$
9.4 Correlations in velocity-angular momentum spaces
 9.4.1 Experimental observation of the Kagan polarization

References

10. LIGHT SCATTERING

10.1 Light scattering by molecular gases: general theory
 10.1.1 The reduced spectral intensity
 10.1.2 Spectral functions
 10.1.3 Mean square fluctuations
 10.1.4 Average time evolution of fluctuations
10.2 The Rayleigh–Brillouin spectrum
10.3 Depolarized Rayleigh (DPR) light scattering
 10.3.1 High-density binary collision regime: Lorentzian limit
 10.3.2 Collisional and diffusional broadening: Lorentzian limit
 10.3.3 Non-Lorentzian description of the DPR spectrum
 10.3.4 Measurement of the DPR spectrum
 10.3.5 Interpretation of the DPR spectrum
 10.3.6 Multilevel description of DPR light scattering
 10.3.7 DPR scattering in binary mixtures
10.4 Rotational Raman scattering
10.4.1 Theory of rotational Raman scattering 490
10.4.2 Measurement and analysis of rotational Raman lines 492
References 497

11. SPECTROSCOPIC PHENOMENA 500
11.1 Nuclear magnetic relaxation 500
 11.1.1 The relaxation experiment 502
 11.1.2 The WS equation and nuclear relaxation 505
 11.1.3 Nuclear magnetic relaxation in monatomic gases 507
 11.1.4 Nuclear magnetic relaxation in polyatomic gases 510
 11.1.5 Spin-rotation relaxation 516
 11.1.6 Dipolar and quadrupolar relaxation 522
 11.1.7 Relaxation in symmetric and spherical top gases 528
 11.1.8 Nuclear magnetic relaxation in binary mixtures 535
 11.1.9 Comparison between theory and experiment 538
11.2 Collision broadening and shifting of spectral lines 545
 11.2.1 Nonresonant absorption and fine-structure transitions 546
 11.2.2 Broadening and shifting of resonant lines 551
References 552

INDEX 557