Contents

1. **Parameter optimization problems**

 1.1 Problems without constraints
 1.2 Problems with equality constraints; necessary conditions for a stationary point
 1.3 Problems with equality constraints; sufficient conditions for a local minimum
 1.4 Neighboring optimum solutions and the interpretation of the Lagrange multipliers
 1.5 Numerical solution by a first-order gradient method
 1.6 Numerical solution by a second-order gradient method
 1.7 Problems with inequality constraints
 1.8 Linear programming problems
 1.9 Numerical solution of problems with inequality constraints
 1.10 The penalty function methods

2. **Optimization problems for dynamic systems**

 2.1 Single-stage systems
 2.2 Multistage systems; no terminal constraints, fixed number of stages
 2.3 Continuous systems; no terminal constraints, fixed terminal time
 2.4 Continuous systems; some state variables specified at a fixed terminal time
 2.5 Continuous systems with functions of the state variables prescribed at a fixed terminal time
 2.6 Multistage systems; functions of the state variables specified at the terminal stage
2.7 Continuous systems; some state variables specified at an unspecified terminal time (including minimum-time problems) 71
2.8 Continuous systems; functions of the state variables specified at an unspecified terminal time, including minimum-time problems 87

3. **Optimization problems for dynamic systems with path constraints**

3.1 Integral constraints 90
3.2 Control variable equality constraints 95
3.3 Equality constraints on functions of the control and state variables 99
3.4 Equality constraints on functions of the state variables 100
3.5 Interior-point constraints 101
3.6 Discontinuities in the system equations at interior points 104
3.7 Discontinuities in the state variables at interior points 106
3.8 Inequality constraints on the control variables 108
3.9 Linear optimization problems; “bang-bang” control 110
3.10 Inequality constraints on functions of the control and state variables 117
3.11 Inequality constraints on functions of the state variables 117
3.12 The separate computation of arcs in problems with state variable inequality 124
3.13 Corner conditions 125

4. **Optimal feedback control**

4.1 The extremal field approach 128
4.2 Dynamic programming; the partial differential equation for the optimal return function 131
4.3 Reducing the dimension of the state space by use of dimensionless variables 141

5. **Linear systems with quadratic criteria:**
 linear feedback

5.1 Terminal controllers and regulators; introduction 148
5.2 Terminal controllers; quadratic penalty function on terminal error 148
5.3 Terminal controllers; zero terminal error and controllability 158
5.4 Regulators and stability 167
6. **Neighboring extremals and the second variation**

6.1 Neighboring extremal paths (final time specified)
6.2 Determination of neighboring extremal paths by the backward sweep method
6.3 Sufficient conditions for a local minimum
6.4 Perturbation feedback control (final time specified)
6.5 Neighboring extremal paths with final time unspecified
6.6 Determination of neighboring extremal paths by the backward sweep method with final time unspecified
6.7 Sufficient conditions for a local minimum with final time unspecified
6.8 Perturbation feedback control with final time unspecified
6.9 Sufficient conditions for a strong minimum
6.10 A multistage version of the backward sweep
6.11 Sufficient conditions for a local minimum for multistage systems

7. **Numerical solution of optimal programming and control problems**

7.1 Introduction
7.2 Extremal field methods; dynamic programming
7.3 Neighboring extremal algorithms
7.4 First-order gradient algorithms
7.5 Second-order gradient algorithms
7.6 A quasilinearization algorithm
7.7 A second-order gradient algorithm for multistage systems
7.8 A conjugate-gradient algorithm
7.9 Problems with inequality constraints on the control variables
7.10 Problems with inequality constraints on the state variables
7.11 Mathematical programming approach

8. **Singular solutions of optimization and control problems**

8.1 Introduction
8.2 Singular solutions of optimization problems for linear dynamic systems with quadratic criteria
8.3 Singular solutions of optimization problems for nonlinear dynamic systems
8.4 A generalized convexity condition for singular arcs 257
8.5 Conditions at a junction 261
8.6 A resource allocation problem involving inequality constraints and singular arcs 262

9. Differential games
9.1 Discrete games 271
9.2 Continuous games 274
9.3 Differential games 277
9.4 Linear-quadratic pursuit-evasion games 282
9.5 A minimax-time intercept problem with bounded controls 289
9.6 A discussion of differential games 293

10. Some concepts of probability
10.1 Discrete-valued random scalars 296
10.2 Discrete-valued random vectors 297
10.3 Correlation, independence, and conditional probabilities 299
10.4 Continuous-valued random variables 300
10.5 Common probability mass functions 303
10.6 Common probability density functions 306
10.7 Gaussian density function for a random vector 309

11. Introduction to random processes
11.1 Random sequences and the markov property 315
11.2 Gauss-markov random sequences 320
11.3 Random processes and the markov property 326
11.4 Gauss-markov random processes 328
11.5 Approximation of a gauss-markov process by a gauss-markov sequence 342
11.6 State variables and the markov property 344
11.7 Processes with independent increments 346

12. Optimal filtering and prediction
12.1 Introduction 348
12.2 Estimation of parameters, using weighted least-squares 349
12.3 Optimal filtering for single-stage linear transitions 359
12.4 Optimal filtering and prediction for linear multistage processes 360
12.5 Optimal filtering for continuous linear dynamic systems with continuous measurements 364
12.6 Optimal filtering for nonlinear dynamic processes 373
12.7 Estimation of parameters using a Bayesian approach 377
12.8 Bayesian approach to optimal filtering and prediction for multistage systems 382
12.9 Detection of gaussian signal in noise 388

13. Optimal smoothing and interpolation

13.1 Optimal smoothing for single-state transitions 390
13.2 Optimal smoothing for multistage processes 393
13.3 Optimal smoothing and interpolation for continuous processes 395
13.4 Optimal smoothing for nonlinear dynamic processes 400
13.5 Sequentially-correlated measurement noise 400
13.6 Time-correlated measurement noise 405

14. Optimal feedback control in the presence of uncertainty

14.1 Introduction 408
14.2 Continuous linear systems with white process noise and perfect knowledge of the state 408
14.3 Continuous linear systems with process and measurements containing additive white noise; the certainty-equivalence principle 414
14.4 Average behavior of an optimally controlled system 416
14.5 Synthesis of regulators for stationary linear systems with stationary additive white noise 418
14.6 Synthesis of terminal controllers for linear systems with additive white noise 422
14.7 Multistage linear systems with additive purely random noise; the discrete certainty-equivalence principle 428
14.8 Optimum feedback control for nonlinear systems with additive white noise 432

Appendix A—Some basic mathematical facts

A1 Introduction 438
A2 Notation 438
A3 Matrix algebra and geometrical concepts 441
A4 Elements of ordinary differential equations 448
Appendix B—Properties of linear systems

B1 Linear algebraic equations 455
B2 Controllability 455
B3 Observability 457
B4 Stability 458
B5 Canonical transformations 459

References 462
Multiple-choice examination 467
Index 477

LOGICAL DEPENDENCE OF CHAPTERS

Appendices A & B

Deterministic Part = Chapters 1–9

Stochastic Part = Chapters 10–14

Introductory Part = Chapter 1 through Section 5
Chapter 2 through Section 3
Chapters 4, 5(excluding Section 3)
Chapter 7 through Section 2
Chapters 10–12

Advanced Part = Remainder of book