Contents

1 INTRODUCTION

1.1 Definition of reliability

1.2 Historical development perspective

1.3 Quality and reliability

1.4 Economics and optimisation

1.5 Probability; basic laws
1.5.1 Probability distributions
1.5.2 Basic reliability distribution theory

1.6 Specific terms
1.6.1 The generalised definition of \(l \) and MTBF

1.7 Failures types
1.7.1 Failures classification

1.8 Reliability estimates

1.9 „Bath–tub“ failure curve

1.10 Reliability of electronic systems
1.10.1 Can the batch reliability be increased?
1.10.2 What is the utility of screening tests?
1.10.3 Derating technique
1.10.4 About the testability of electronic and telecommunication systems
1.10.5 Accelerated ageing methods for equipped boards
1.10.6 Operational failures
1.10.7 FMEA/FMECA method
1.10.8 Fault tree analysis (FTA)
1.10.8.1 Monte Carlo techniques
1.10.9 Practical recommendations
1.10.10 Component reliability and market economy

1
2 STATE OF THE ART IN RELIABILITY

2.1 Cultural features
 2.1.1 Quality and reliability assurance
 2.1.2 Total quality management (TQM)
 2.1.3 Building-in reliability (BIR)
 2.1.4 Concurrent engineering (CE)
 2.1.5 Acquisition reform

2.2 Reliability building
 2.2.1 Design for reliability
 2.2.2 Process reliability
 2.2.2.1 Technological synergies
 2.2.3 Screening and burn-in
 2.2.3.1 Burn-in
 2.2.3.2 Economic aspects of burn-in
 2.2.3.3 Other screening tests
 2.2.3.4 Monitoring the screening

2.3 Reliability evaluation
 2.3.1 Environmental reliability testing
 2.3.1.1 Synergy of environmental factors
 2.3.1.2 Temperature cycling
 2.3.1.3 Behavior in a radiation field
 2.3.2 Life testing with noncontinuous inspection
 2.3.3 Accelerated testing
 2.3.3.1 Activation energy depends on the stress level
 2.3.4 Physics of failure
 2.3.4.1 Drift, drift failures and drift behaviour
 2.3.5 Prediction methods
 2.3.5.1 Prediction methods based on failure physics
 2.3.5.2 Laboratory versus operational reliability

2.4 Standardisation
 2.4.1 Quality systems
 2.4.2 Dependability

References

References
3 RELIABILITY OF PASSIVE ELECTRONIC PARTS

3.1 How parts fail

3.2 Resistors
3.2.1 Some important parameters
3.2.2 Characteristics
3.2.3 Reasons for inconstant resistors [3.8]...[3.10]
3.2.3.1 Carbon film resistors (Fig. 3.4)
3.2.3.2 Metal film resistors
3.2.3.3 Composite resistors (on inorganic basis)
3.2.4 Some design rules
3.2.5 Some typical defects of resistors
3.2.5.1 Carbon film resistors
3.2.5.2 Metal film resistors
3.2.5.3 Film resistors
3.2.5.4 Fixed wirewound resistors
3.2.5.5 Variable wirewound resistors
3.2.5.6 Noise behaviour

3.3 Reliability of capacitors
3.3.1 Introduction
3.3.2 Aluminium electrolytic capacitors
3.3.2.1 Characteristics
3.3.2.2 Results of reliability research studies
3.3.2.3 Reliability data
3.3.2.4 Main failures types
3.3.2.5 Causes of failures
3.3.3 Tantalum capacitors
3.3.3.1 Introduction
3.3.3.2 Structure and properties
3.3.3.3 Reliability considerations
3.3.3.4 DC/C0 variation with temperature
3.3.3.5 The failure rate and the product CU
3.3.3.6 Loss factor
3.3.3.7 Impedance at 100 Hz
3.3.3.8 Investigating the stability of 35 V tantalum capacitor
3.3.3.9 The failure rate model
3.3.4 Reliability comparison
3.3.5 Another reliability comparison
3.3.6 Polyester film / foil capacitors
3.3.7 Wound capacitors
3.3.8 Reliability and screening methods [3.37] [3.38]
4 RELIABILITY OF DIODES 145

4.1 Introduction 145

4.2 Semiconductor diodes 146
4.2.1 Structure and properties 146
4.2.2 Reliability tests and results 146
4.2.3 Failure mechanisms 148
4.2.3.1 Mechanical failure mechanisms 149
4.2.3.2 Electrical failure mechanisms 149
4.2.4 New technologies 150
4.2.5 Correlation between technology and reliability 153

4.3 Z diodes 154
4.3.1 Characteristics 154
4.3.2 Reliability investigations and results 155
4.3.3 Failure mechanisms 158
4.3.3.1 Failure mechanisms of Z diodes 159
4.3.3.2 Design for reliability 160
4.3.3.3 Some general remarks 161
4.3.3.4 Catastrophic failures 162
4.3.3.5 Degradation failures 162

4.4 Trans-Zorb diodes 163
4.4.1 Introduction 163
4.4.2 Structure and characteristics 163

4.5 Impatt (IMPact Avalanche and Transit-Time) diodes 163
4.5.1 Reliability test results for HP silicon single drift Impatt diodes 165
4.5.2 Reliability test results for HP silicon double drift Impatt diodes 166
4.5.3 Factors affecting the reliability and safe operation 166

References 169
5 RELIABILITY OF SILICON TRANSISTORS

5.1 Introduction

5.2 Technologies and power limitations
 5.2.1 Bipolar transistors
 5.2.2 Unipolar transistors

5.3 Electrical characteristics
 5.3.1 Recommendations
 5.3.2 Safety Limits
 5.3.3 The du/dt phenomenon

5.4 Reliability characteristics

5.5 Thermal fatigue

5.6 Causes of failures
 5.6.1 Failure mechanisms
 5.6.2 Failure modes
 5.6.3 A check-up for the users
 5.6.4 Bipolar transistor peripherics

5.7 The package problem

5.8 Accelerated tests
 5.8.1 The Arrhenius model
 5.8.2 Thermal cycling

5.9 How to improve the reliability

5.10 Some recommendations

References

6 RELIABILITY OF THYRISTORS

6.1 Introduction

6.2 Design and reliability
 6.2.1 Failure mechanisms
 6.2.2 Plastic and hermetic package problems
 6.2.3 Humidity problem
 6.2.4 Evaluating the reliability

References
6.2.5 Thyristor failure rates 206

6.3 Derating 207

6.4 Reliability screens by General Electric 209

6.5 New technology in preparation: SITH 210

References 213

7 RELIABILITY OF INTEGRATED CIRCUITS 215

7.1 Introduction 215

7.2 Reliability evaluation 219

7.2.1 Some reliability problems 219

7.2.2 Evaluation of integrated circuit reliability 219

7.2.3 Accelerated thermal test 221

7.2.4 Humidity environment 222

7.2.5 Dynamic life testing 223

7.3 Failure analysis 224

7.3.1 Failure mechanisms 224

7.3.1.1 Gate oxide breakdown 225

7.3.1.2 Surface charges 226

7.3.1.3 Hot carrier effects 226

7.3.1.4 Metal diffusion 226

7.3.1.5 Electromigration 227

7.3.1.6 Fatigue 228

7.3.1.7 Aluminium-gold system 229

7.3.1.8 Brittle fracture 229

7.3.1.9 Electrostatic Discharge (ESD) 229

7.3.2 Early failures 230

7.3.3 Modeling IC reliability 231

7.4 Screening and burn-in 233

7.4.1 The necessity of screening 233

7.4.2 Efficiency and necessity of burn-in 235

7.4.3 Failures at screening and burn-in 237

7.5 Comparison between the IC families TTL Standard and TTL-LS 240

7.6 Application Specific Integrated Circuits (ASIC) 240

References 241
8 RELIABILITY OF HYBRIDS

8.1 Introduction

8.2 Thin-film hybrid circuits
8.2.1 Reliability characteristics of resistors
8.2.2 Reliability of throughout-contacts

8.3 Thick-film hybrids
8.3.1 Failure types
8.3.2 Reliability of resistors and capacitors
8.3.3 Reliability of ,,beam-leads,`

8.4 Thick-film versus thin-film hybrids

8.5 Reliability of hybrid ICs

8.6 Causes of failures

8.7 Influence of radiation

8.8 Prospect outlook of the hybrid technology

8.9 Die attach and bonding techniques
8.9.1 Introduction
8.9.2 Hybrid package styles

8.10 Failure mechanisms

References

9 RELIABILITY OF MEMORIES

9.1 Introduction

9.2 Process-related reliability aspects

9.3 Possible memories classifications

9.4 Silicon On Insulator (SOI) technologies
9.4.1 Silicon on sapphire (SOS) technology

9.5 Failure frequency of small geometry memories
9.6 Causes of hardware failures
- **9.6.1** Read only memories (ROMs) 294
- **9.6.2** Small geometry devices 296

9.7 Characterisation testing
- **9.7.1** Timing and its influence on characterisation and test 298
- **9.7.2** Test and characterisation of refresh 298
- **9.7.2.1** Screening tests and test strategies 299
- **9.7.3** Test programmes and categories 301
 - **9.7.3.1** Test categories 301
 - **9.7.3.2** RAM failure modes 302
 - **9.7.3.3** Radiation environment in space; hardening approaches 303

9.8 Design trends in microprocessor domain 305

9.9 Failure mechanisms of microprocessors 306

References 310

10 RELIABILITY OF OPTOELECTRONICS 313

10.1 Introduction 313

10.2 LED reliability 316

10.3 Optocouplers 318
 - **10.3.1** Introduction 318
 - **10.3.2** Optocouplers ageing problem 318
 - **10.3.3** CTR degradation and its cause 320
 - **10.3.4** Reliability of optocouplers 321
 - **10.3.5** Some basic rules for circuit designers 323

10.4 Liquid crystal displays 324
 - **10.4.1** Quality and reliability of LCDs 325

References 327

11 NOISE AND RELIABILITY 329

11.1 Introduction 329
11.2 Excess noise and reliability 330
11.3 Popcorn noise 331
11.4 Flicker noise 333
 11.4.1 Measuring noise 333
 11.4.2 Low noise, long life 333
11.5 Noise figure 334
11.6 Improvements in signal quality of digital networks 336
References 336

12 PLASTIC PACKAGE AND RELIABILITY 339
12.1 Historical development 339
12.2 Package problems 341
 12.2.1 Package functions 342
12.3 Some reliabilistic aspects of the plastic encapsulation 343
12.4 Reliability tests 344
 12.4.1 Passive tests 345
 12.4.2 Active tests 346
 12.4.3 Life tests 347
 12.4.4 Reliability of intermittent functioning plastic encapsulated ICs 349
12.5 Reliability predictions 352
12.6 Failure analysis 353
12.7 Technological improvements 354
 12.7.1 Reliability testing of PCB equipped with PEM 356
 12.7.2 Chip-Scale packaging 356
12.8 Can we use plastic encapsulated microcircuits (PEM) in high reliability applications? 357
References 359
13 TEST AND TESTABILITY OF LOGIC ICS 363

13.1 Introduction 363

13.2 Test and test systems 364
 13.2.1 Indirect tests 365

13.3 Input control tests of electronic components 365
 13.3.1 Electrical tests 366
 13.3.2 Some economic considerations 367
 13.3.3 What is the cost of the tests absence? 368

13.4 LIC selection and connected problems 369
 13.4.1 Operational tests of memories 370
 13.4.2 Microprocessor test methods 371
 13.4.2.1 Selftesting 371
 13.4.2.2 Comparison method 371
 13.4.2.3 Real time algorithmic method 372
 13.4.2.4 Registered patterns method 372
 13.4.2.5 Random test of microprocessors 373

13.5 Testability of LICs 373
 13.5.1 Constraints 374
 13.5.2 Testability of sequential circuits 374
 13.5.3 Independent and neutral test laboratories 375

13.6 On the testability of electronic and telecommunications systems 376

References 379

14 FAILURE ANALYSIS 381

14.2 The purpose of failure analysis 383
 14.2.1 Where are discovered the failures? 383
 14.2.2 Types of failures 384

14.3 Methods of analysis 386
 14.3.1 Electrical analysis 386
 14.3.2 X-ray analysis 387
 14.3.3 Hermeticity testing methods 388
 14.3.4 Conditioning tests 388
 14.3.5 Chemical means 388
14.3.6	Mechanical means	389
14.3.7	Microscope analysis	389
14.3.8	Plasma etcher	389
14.3.9	Electron microscope	389
14.3.10	Special means	390

14.4 Failure causes

14.5 Some examples

References

15 APPENDIX

15.1	Software-package RAMTOOL++ [15.1]	413
15.1.1	Core and basic module R³ Trecker	413
15.1.2	RM analyst	414
15.1.3	Mechanicus (Maintainability analysis)	414
15.1.4	Logistics	414
15.1.5	RM FFT-module	415
15.1.6	PPoF-module	415

15.2	Failure rates for components used in telecommunications	415
15.3	Failure types for electronic components [15.2]	418
15.4	Detailed failure modes for some components	419
15.5	Storage reliability data [15.3]	420
15.6	Failure criteria. Some examples	420
15.7	Typical costs for the screening of plastic encapsulated ICs	421
15.8	Results of 1000 h HTB life tests for CMOS microprocessors	421
15.9	Results of 1000 h HTB life tests for linear circuits	422
15.10	Average values of the failure rates for some IC families	422
15.11	Activation energy values for various technologies	423
15.12	Failures at burn-in	424

References

424
GENERAL BIBLIOGRAPHY 425
RELIABILITY GLOSSARY 455
LIST OF ABBREVIATIONS 473
POLYGLOT DICTIONARY OF RELIABILITY TERMS 481
INDEX 501