Preface to the Fourth Edition v

1 The Integers 1
 1.1 Commutative Rings; Integral Domains 1
 1.2 Elementary Properties of Commutative Rings 3
 1.3 Ordered Domains 8
 1.4 Well-Ordering Principle 11
 1.5 Finite Induction; Laws of Exponents 12
 1.6 Divisibility 16
 1.7 The Euclidean Algorithm 18
 1.8 Fundamental Theorem of Arithmetic 23
 1.9 Congruences 25
 1.10 The Rings \mathbb{Z}_n 29
 1.11 Sets, Functions, and Relations 32
 1.12 Isomorphisms and Automorphisms 35

2 Rational Numbers and Fields 38
 2.1 Definition of a Field 38
 2.2 Construction of the Rationals 42
 2.3 Simultaneous Linear Equations 47
 2.4 Ordered Fields 52
 2.5 Postulates for the Positive Integers 54
 2.6 Peano Postulates 57

3 Polynomials 61
 3.1 Polynomial Forms 61
 3.2 Polynomial Functions 65
 3.3 Homomorphisms of Commutative Rings 69
 3.4 Polynomials in Several Variables 72
 3.5 The Division Algorithm 74
 3.6 Units and Associates 76
 3.7 Irreducible Polynomials 78
 3.8 Unique Factorization Theorem 80
 3.9 Other Domains with Unique Factorization 84
 3.10 Eisenstein's Irreducibility Criterion 88
 3.11 Partial Fractions 90
Real Numbers

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Dilemma of Pythagoras</td>
<td>94</td>
</tr>
<tr>
<td>4.2 Upper and Lower Bounds</td>
<td>96</td>
</tr>
<tr>
<td>4.3 Postulates for Real Numbers</td>
<td>98</td>
</tr>
<tr>
<td>4.4 Roots of Polynomial Equations</td>
<td>101</td>
</tr>
<tr>
<td>4.5 Dedekind Cuts</td>
<td>104</td>
</tr>
</tbody>
</table>

Complex Numbers

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Definition</td>
<td>107</td>
</tr>
<tr>
<td>5.2 The Complex Plane</td>
<td>110</td>
</tr>
<tr>
<td>5.3 Fundamental Theorem of Algebra</td>
<td>113</td>
</tr>
<tr>
<td>5.4 Conjugate Numbers and Real Polynomials</td>
<td>117</td>
</tr>
<tr>
<td>5.5 Quadratic and Cubic Equations</td>
<td>118</td>
</tr>
<tr>
<td>5.6 Solution of Quartic by Radicals</td>
<td>121</td>
</tr>
<tr>
<td>5.7 Equations of Stable Type</td>
<td>122</td>
</tr>
</tbody>
</table>

Groups

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Symmetries of the Square</td>
<td>124</td>
</tr>
<tr>
<td>6.2 Groups of Transformations</td>
<td>126</td>
</tr>
<tr>
<td>6.3 Further Examples</td>
<td>131</td>
</tr>
<tr>
<td>6.4 Abstract Groups</td>
<td>133</td>
</tr>
<tr>
<td>6.5 Isomorphism</td>
<td>137</td>
</tr>
<tr>
<td>6.6 Cyclic Groups</td>
<td>140</td>
</tr>
<tr>
<td>6.7 Subgroups</td>
<td>143</td>
</tr>
<tr>
<td>6.8 Lagrange’s Theorem</td>
<td>146</td>
</tr>
<tr>
<td>6.9 Permutation Groups</td>
<td>150</td>
</tr>
<tr>
<td>6.10 Even and Odd Permutations</td>
<td>153</td>
</tr>
<tr>
<td>6.11 Homomorphisms</td>
<td>155</td>
</tr>
<tr>
<td>6.12 Automorphisms; Conjugate Elements</td>
<td>157</td>
</tr>
<tr>
<td>6.13 Quotient Groups</td>
<td>161</td>
</tr>
<tr>
<td>6.14 Equivalence and Congruence Relations</td>
<td>164</td>
</tr>
</tbody>
</table>

Vectors and Vector Spaces

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Vectors in a Plane</td>
<td>168</td>
</tr>
<tr>
<td>7.2 Generalizations</td>
<td>169</td>
</tr>
<tr>
<td>7.3 Vector Spaces and Subspaces</td>
<td>171</td>
</tr>
<tr>
<td>7.4 Linear Independence and Dimension</td>
<td>176</td>
</tr>
</tbody>
</table>
7.5 Matrices and Row-equivalence 180
7.6 Tests for Linear Dependence 183
7.7 Vector Equations; Homogeneous Equations 188
7.8 Bases and Coordinate Systems 193
7.9 Inner Products 198
7.10 Euclidean Vector Spaces 200
7.11 Normal Orthogonal Bases 203
7.12 Quotient-spaces 206
7.13 Linear Functions and Dual Spaces 208

8 The Algebra of Matrices 214

8.1 Linear Transformations and Matrices 214
8.2 Matrix Addition 220
8.3 Matrix Multiplication 222
8.4 Diagonal, Permutation, and Triangular Matrices 228
8.5 Rectangular Matrices 230
8.6 Inverses 235
8.7 Rank and Nullity 241
8.8 Elementary Matrices 243
8.9 Equivalence and Canonical Form 248
8.10 Bilinear Functions and Tensor Products 251
8.11 Quaternions 255

9 Linear Groups 260

9.1 Change of Basis 260
9.2 Similar Matrices and Eigenvectors 263
9.3 The Full Linear and Affine Groups 268
9.4 The Orthogonal and Euclidean Groups 272
9.5 Invariants and Canonical Forms 277
9.6 Linear and Bilinear Forms 280
9.7 Quadratic Forms 283
9.8 Quadratic Forms Under the Full Linear Group 286
9.9 Real Quadratic Forms Under the Full Linear Group 288
9.10 Quadratic Forms Under the Orthogonal Group 292
9.11 Quadratics Under the Affine and Euclidean Groups 296
9.12 Unitary and Hermitian Matrices 300
9.13 Affine Geometry 305
9.14 Projective Geometry 312

10 Determinants and Canonical Forms 318

10.1 Definition and Elementary Properties of Determinants 318
10.2 Products of Determinants 323
15 Galois Theory

15.1 Root Fields for Equations 452
15.2 Uniqueness Theorem 454
15.3 Finite Fields 456
15.4 The Galois Group 459
15.5 Separable and Inseparable Polynomials 464
15.6 Properties of the Galois Group 467
15.7 Subgroups and Subfields 471
15.8 Irreducible Cubic Equations 474
15.9 Insolvability of Quintic Equations 478

Bibliography 483

List of Special Symbols 486

Index 489