Giora Shaviv

The Synthesis of the Elements

The Astrophysical Quest for Nucleosynthesis and What It Can Tell Us About the Universe
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.27</td>
<td>Mendeleev 1869 and Meyer 1864–1870</td>
<td>39</td>
</tr>
<tr>
<td>1.28</td>
<td>Loschmidt and the Value of the Avogadro Number</td>
<td>47</td>
</tr>
<tr>
<td>1.29</td>
<td>Meyer 1888: A Historical Perspective</td>
<td>48</td>
</tr>
<tr>
<td>1.30</td>
<td>Certain Elements Are Not Forever</td>
<td>48</td>
</tr>
<tr>
<td>1.31</td>
<td>Philosophy of a Discoverer When No Theory Is Yet Available</td>
<td>49</td>
</tr>
<tr>
<td>1.32</td>
<td>Is the Atomic Weight Variable?</td>
<td>50</td>
</tr>
<tr>
<td>1.33</td>
<td>Moseley: At Long Last, an Accurate Table</td>
<td>52</td>
</tr>
<tr>
<td>1.34</td>
<td>The Theory Behind Moseley’s Discovery</td>
<td>55</td>
</tr>
<tr>
<td>1.35</td>
<td>The Last Element to Be Discovered</td>
<td>55</td>
</tr>
<tr>
<td>1.36</td>
<td>Aston and the Discovery of Isotopes</td>
<td>55</td>
</tr>
<tr>
<td>1.37</td>
<td>A Solution to a Long-Standing Problem</td>
<td>57</td>
</tr>
<tr>
<td>1.38</td>
<td>Is the Periodicity of the Chemical Elements Really So Obvious?</td>
<td>59</td>
</tr>
</tbody>
</table>

2 Preparing the Ground for Delving into the Stars

2.1 The Long Road to Deciphering the Composition of the Stars | 61
2.2 Why the Sodium D Line Appears Everywhere | 64
2.3 The Concept of Equilibrium: Pictet and Prévost | 65
2.4 Beyond the Visible Light | 69
2.5 Stewart, the Forgotten Discoverer | 73
2.6 Kirchhoff’s Law | 76
2.7 A Modern Physical Explanation for the Reversal Phenomenon | 80
2.8 Could the Coincidence Be Fortuitous? | 81
2.9 The Priority Debate | 81
2.10 The Radiation Law | 81
2.11 Stewart in Retrospect | 83
2.12 Who Discovered the Source of the D₂ Lines? | 84
2.13 Kelvin and the Reversal Phenomenon | 86
2.14 Kirchhoff’s Rebuttal | 89
2.15 Huggins’ Particular View: How Stellar Spectroscopy Came into Being | 90
2.16 Lockyer 1887: The Chemical Composition of the Sun | 91
2.17 More Creditors? | 97
2.18 An Unimaginable but True Story: No Life on the Sun | 98
2.19 Final Comments on the Kirchhoff Saga | 101
2.20 Epilogue | 103
2.21 The Late Kirchhoff Grilled by His Compatriots | 104
2.22 A Mathematical Proof (if Needed): Hilbert | 106
2.23 The French View | 106
2.24 One Can Never Foresee the Future | 107
2.25 Getting the Black Body Function: Maxwell | 107
Towards the Bottom of the Nuclear Binding Energy

5.1 The Light at the End of the Tunnel

5.2 Stellar Energy Balance

5.3 The Birth of Nuclear Astrophysics

5.4 How to Jump from H to He

5.5 The Discovery of the Neutron

5.6 The Return of Atkinson

5.7 Weizsäcker: A Good Idea, but the Wrong Calculation

5.8 The Answers Are in Bethe’s Bible

5.9 Hans Bethe and the First Calculation of the pp Reaction

5.10 Hans Bethe and the CN Cycle

5.11 Schatzman 1951: From White Dwarfs to Main Sequence

5.12 Salpeter 1952: So It Should Be

5.13 The Discovery of the $^3\text{He} + ^4\text{He}$ Reaction: A New Branch

5.14 Where is the pp Reaction Crucial?

The Composition–Age–Velocity Connection

6.1 The Stars are Never at Rest

6.2 The Discovery of the Doppler Effect

6.3 The Doppler Effect at the Service of Astrophysics

6.4 Reality is More Intricate

6.5 Unintentional Evidence from Other Galaxies

6.6 Doubts

6.7 Oort

6.8 The Enigma of the Nebulae

6.9 The Great Debate

6.10 Fornax and Sculptor Provide Hints

6.11 Not all Variables are Alike

6.12 Star Clusters as the Rosetta Stone of Stellar Evolution

6.13 Baade: Stellar Populations

6.14 The Details are Important

6.15 Dispersing the Fog Around the Variable Stars

6.16 It is the Chemical Elements: First Signs

6.17 Confirmation: It is the Chemical Elements

6.18 Theoretical Understanding of Stellar Populations

6.19 Early Successful and Failed Attempts to Explain the Red Giants

6.20 Who is Right?

6.21 Hoyle & Lyttleton and Schönberg & Chandrasekhar (1942)

6.22 Gamow Acquiesces: 1945

6.23 When Do Stars Expand and When Do They Contract

6.24 Failures in Modelling Red Giants
7.21 The BBC Debate and the Invention of a Sensational Buzzword .. 320
7.22 Hayashi: Fixing the Initial State .. 321
7.23 Cold Big Bang? .. 323
7.24 The Early 1950s .. 324
7.25 Alpher, Follin, and Herman Correct the Theory .. 325
7.26 B²FH 1957: An Attempt at a Global Picture ... 325
7.27 Hoyle and Tayler 1964: This Is no Retreat .. 326
7.28 The Cosmic Microwave Background Radiation .. 328
7.29 Peebles (1966): Getting the Helium Abundance Right .. 333
7.30 Wagoner, Fowler, and Hoyle: Light Element Indicators .. 334
7.31 Stars Cannot Do it All .. 336
7.32 Breaking a Symmetry: A Remaining Question .. 338
7.33 The Present Day Picture: Most of the Universe Is Dark .. 339

8 How Nature Overcomes Its Own Barriers ... 341
8.1 Unsuccessful Attempts to Overcome the \{A = 8 Barrier\} ... 341
8.2 Pursuing the Structure of the Carbon Nucleus .. 344
8.3 The Structure of the \(^{12}\text{C}\) Nucleus .. 347
8.4 A Digression to \(^{8}\text{Be}\) .. 348
8.5 Back to New Developments in the Structure of \(^{12}\text{C}\) .. 349
8.6 The Last Word \(^{8}\text{Be}\) Is Unstable .. 354
8.7 Öpik’s Suggested Solution: The Triple Alpha Process ... 354
8.8 More Information About \(^{12}\text{C}\) ... 356
8.9 Salpeter: The Solution Is Two Plus One ... 357
8.10 Between Salpeter and Hoyle 1952–1954 .. 360
8.11 The Kellogg Laboratory Group Phase I .. 361
8.12 The New Experiment .. 362
8.13 Hoyle: We Must Have Carbon in Our Universe! ... 362
8.14 The Kellogg Laboratory Group Phase II .. 364
8.15 Salpeter 1957: Completing the Job .. 366
8.16 When Is the Energy Released? .. 369
8.17 More Resonances in \(^{12}\text{C}\) ... 369
8.18 Carbon Structure Is Half the Story: the \(^{12}\text{C} + \alpha \rightarrow ^{16}O + \gamma\) Reaction .. 370
8.19 Present Day Perspective: Theory .. 373
8.20 The C/O Ratio Today: Observations and What They Imply .. 374
8.21 The Structure of \(^{12}\text{C}\) and the \(\alpha\) Model: Retrospect ... 375
8.22 Some Recent Developments ... 375
8.23 Philosophy: The Anthropic Principle ... 376

9 Beyond Carbon ... 377
9.1 Post-Helium Burning. ... 377
Contents

9.2 Change of Modus Operandi: Neutrino Losses
 Take Control ... 377
9.3 Neutrino Losses 378
9.4 The Paper B2FH 380
9.5 The Rise and Fall of the α Process 382
9.6 The Equilibrium e-Process 387
9.7 Problems with the Grand Picture of B2FH 388
9.8 Carbon Burning 391
9.9 Neon, Oxygen, and Silicon Burning 393
9.10 The Modern State of the Art: Nuclear Networks 396

10 Which Star Becomes Which Supernova? 397
 10.1 SN Type Ia ... 397
 10.2 SN Types Ib and Ic, and II 398

11 Between Two Extreme Nuclear Models 403
 11.1 Nuclear Theory Before Nuclear Physics 404
 11.2 Rutherford's Nuclear Model 407
 11.3 Isotopic Abundances 409
 11.4 Challenging Rutherford: The Right Explanation
 for the Wrong Experiment 410
 11.5 Gamow Enters the Game 412
 11.6 Signs of Non-Smoothness in Nuclear Properties 415
 11.7 The Elimination of the Nuclear Electrons 416
 11.8 More Signs of the Individual Particle Behavior of Nuclei 418
 11.9 Elsasser and Guggenheimer 419
 11.10 Fermi .. 421
 11.11 Bohr's Declaration Against the Independent
 Particle Model ... 424
 11.12 Support in Question: The Breit–Wigner Formula ... 425
 11.13 Domination of the Compound Model 426
 11.14 Elsasser Does Not Back Down 429
 11.15 From Cosmic Abundances to Nuclear Structure 429
 11.16 Enlightenment Occurs Twice 434
 11.17 The Final Vindication: From Three Remains One ... 436
 11.18 How Nature Teases Physicists and Astrophysicists 440
 11.19 A Chemist’s Attempt: Linus Pauling 441
 11.20 What Nuclei Can Exist: The Binding Energy Formula 442
 11.21 Unstable Elements 446
 11.22 Unstable Elements Below Lead 447
 11.23 The Elements Above Lead 448
 11.24 Why Are There Only 92 Chemical Elements? 449
12 Synthesis of the Heavier-than-Iron Elements

12.1 Introduction

12.2 Salient Features of the Abundance Curve for HTI Nuclei

12.3 Overcoming the Coulomb Barrier: Neutron Processes

12.4 Neutron Absorption by Heavy Elements

12.4.1 The Available Time, Timescales, and Capture Processes

12.4.2 The \(\beta \) Parabola

12.5 Steady State Versus Transient Neutron Capture

12.5.1 The Steady State Assumption

12.5.2 Non-Steady State Options

12.6 Classification of Heavy Nuclei

12.7 Viable Stellar Neutron Sources

12.8 The Nuclear Physics of the \(^{13}\text{C}\) Neutron Source

12.8.1 The Nuclear Physics of the \(^{22}\text{Ne}\) Neutron Source

12.9 Where Does the Reaction Take Place?

12.10 Carbon Stars: Where the HTI Nuclei are Synthesized

12.10.1 The Rosetta Stone?

12.11 The Stellar Asymptotic Giant Branch Phase

12.11.1 Towards the AGB Phase of Stellar Evolution

12.12 The Helium Flash: Does it or Does it Not Mix

12.13 Core Helium Burning

12.14 Two Burning Shells

12.15 Why Cigar Burning is Unstable in Stars

12.16 Two Types of Mixing, but Do They Mix?

12.17 The End of the AGB Phase and Planetary Nebulae

12.17.1 Mass Loss

12.18 What Becomes of a Star After the AGB Phase?

12.19 The Mass Limit

12.20 Comparison with Observation: But What to Compare?

12.20.1 Is There Mixing or Not?

12.21 Consequences of Complexity: Each Computer Code has its Solution

12.22 Variations with the Metallicity

12.23 Astrophysical Problems Affecting the \(s \)-Process Theory

13 A Process in Search of an Environment: The \(r \)-Process

13.1 The \(r \)-Process: A High Neutron Flux for a Short Time

13.2 \(r \)-Process Signatures in the Solar System

Abundance Curve

13.3 \(r \)-Process Elements in the Sun

13.4 Some Characteristics of the Process

13.5 Site-Free High-Temperature \(r \)-Process Models
13.6 A Site-Free High-Density \(r \)-Process Scenario .. 546
13.7 The Multi-Event \(r \)-Process Model .. 547
13.8 The Basic Problem: Lack of Nuclear Data—An Example 548
13.8.1 The Nuclear Binding Energy ... 551
13.9 Neutron Absorption Data ... 556
13.10 Where Could the \(r \)-Process Operate? Suggested Sites 557
13.10.1 Neutron Star Mergers ... 557
13.10.2 \(r \)-Process in Neutrino Winds .. 561
13.10.3 Neutron Captures in Exploding He- or C-Rich Layers 564
13.10.4 The \(r \)-Process in the Decompression of Cold Neutron Star Matter 565
13.11 What Can We Learn from the \(r \)-Process Abundances 566
13.12 The So-Called Mo Anomaly ... 566
13.13 The Xe Anomaly and a Revolution ... 569
13.14 Determining the Abundance of HTI Elements in Stars 572
13.15 Neutron Capture During the Early Evolutionary Phases of the Galaxy 574
13.16 Are \(r \)-Process Elements in Metal-Poor Stars Solar Abundance Compatible? 576
13.17 The Galactic History of Neutron-Capture Elements 577
13.18 Solar System Nucleo-Cosmochronology .. 578
13.19 The \(p \)-Process .. 580
13.19.1 Spallation .. 584
13.20 Astrophysically Relevant Progress Expected in Nuclear Physics 586
13.20.1 Nuclear Ground State Properties .. 586
13.20.2 Peculiarities of High N/Z Ratios: Halo Nuclei 587
13.20.3 Chaos? ... 588
13.20.4 Are the Magic Numbers Universal? ... 590
13.20.5 More Than One Ground State ... 591
13.20.6 Half-Lives Against \(\beta \)-Decay .. 592
13.20.7 Clustering in Neutron-Rich Nuclei ... 592
13.20.8 And Yet There Is Life in the Old \(\alpha \) Model 594
13.21 No Further Neutron Build-up: The Fission Barrier 596
13.22 Some Reflections on Present Day Nuclear Physics 597

14 The Elusive First Stars ... 599
14.1 The Need for Population III ... 599
14.2 Cosmic Timetable: When Did It Happen? ... 600
14.3 Some General Properties Expected of Population III 601
14.4 Ideas Leading to Population III: Why Do We Need them? 602
14.5 Alternative Ideas .. 604
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.6</td>
<td>Can a Non-Standard Big Bang Do the Job?</td>
<td>612</td>
</tr>
<tr>
<td>14.7</td>
<td>Why Do Stars Form?</td>
<td>613</td>
</tr>
<tr>
<td>14.8</td>
<td>Thermal Stability</td>
<td>620</td>
</tr>
<tr>
<td>14.9</td>
<td>Primordial Cooling and the Hydrogen Molecule</td>
<td>623</td>
</tr>
<tr>
<td>14.10</td>
<td>Must the First Star Have Been Massive?</td>
<td>625</td>
</tr>
<tr>
<td>14.11</td>
<td>How Stars Form Today</td>
<td>626</td>
</tr>
<tr>
<td>14.12</td>
<td>The Virial Theorem in Clusters of Galaxies</td>
<td>627</td>
</tr>
<tr>
<td>14.15</td>
<td>The Role of Dark Matter in Structure formation</td>
<td>642</td>
</tr>
<tr>
<td>14.16</td>
<td>Almost Seeing the Beginning</td>
<td>645</td>
</tr>
<tr>
<td>14.17</td>
<td>When Did the First Stars Form?</td>
<td>646</td>
</tr>
<tr>
<td>14.18</td>
<td>Where Are the First Heavy Elements Expected to Have Been Synthesized?</td>
<td>646</td>
</tr>
<tr>
<td>14.19</td>
<td>What Has Been Found So Far?</td>
<td>650</td>
</tr>
<tr>
<td>14.20</td>
<td>The Most Massive Stars Known Today</td>
<td>652</td>
</tr>
<tr>
<td>14.21</td>
<td>The Intriguing Abundance of Lithium in Metal-Poor Stars</td>
<td>654</td>
</tr>
<tr>
<td>14.22</td>
<td>The First Direct Age Measurement of a Star</td>
<td>657</td>
</tr>
<tr>
<td>14.23</td>
<td>The Tale of G77-61: What an Old Star Can Tell Us</td>
<td>660</td>
</tr>
<tr>
<td>14.24</td>
<td>Metal-Rich Stars: A Star Loaded with Puzzles</td>
<td>663</td>
</tr>
<tr>
<td>14.26</td>
<td>Open Questions</td>
<td>668</td>
</tr>
</tbody>
</table>

Author Index | 671