Contents

1 **Black Holes: Big Picture**
 1.1 Gravity and Black Holes 1
 1.2 Brief History of Black Holes 8
 1.3 'Dark Stars' vs. Black Holes 12
 1.4 Final State of Stellar Evolution 15
 1.5 Equilibrium of Gravitating Systems 19
 1.6 Important Notions of Astrophysics 22
 1.7 Black Holes in Astrophysics and Cosmology 26
 1.8 Stellar-Mass Black Holes 29
 1.9 Supermassive Black Holes 34
 1.10 Primordial Black Holes 40
 1.11 Black Holes in Theoretical Physics 41
 1.12 Black Holes and Extra Dimensions 44

2 **Physics in a Uniformly Accelerated Frame**
 2.1 Minkowski Spacetime and Its Symmetries 47
 2.2 Minkowski Spacetime in Curved Coordinates 50
 2.3 Uniformly Accelerated Reference Frame 57
 2.4 Homogeneous Gravitational Field 59
 2.5 Causal Structure 63
 2.6 Wick's Rotation in the Rindler Space 65

3 **Riemannian Geometry**
 3.1 Differential Manifold, Tensors 67
 3.2 Metric 74
 3.3 Covariant Derivative 79
 3.4 Lie and Fermi Transport 81
 3.5 Curvature Tensor 84
 3.6 Parallel Transport of a Vector 90
 3.7 Spacetime Symmetries 97
 3.8 Submanifold 102
 3.9 Integration 106

4 **Particle Motion in Curved Spacetime**
 4.1 Equations of Motion 109
 4.2 Phase Space 114
 4.3 Complete Integrability 120
5 Einstein Equations 127
 5.1 Einstein–Hilbert Action 127
 5.2 Einstein Equations 129
 5.3 Linearized Gravity 135
 5.4 Gravitational radiation 142
 5.5 Gravity in Higher-Dimensions 149

6 Spherically Symmetric Black Holes 162
 6.1 Spherically Symmetric Gravitational Field 162
 6.2 Schwarzschild–de Sitter Metric 166
 6.3 Global Structure of the Schwarzschild Spacetime 172
 6.4 Black Hole Interior 178
 6.5 Painlevè–Gullstrand Metric 180
 6.6 Eddington–Finkelstein Coordinates 181
 6.7 Charged Black Holes 181
 6.8 Higher-Dimensional Spherical Black Holes 182

7 Particles and Light Motion in Schwarzschild Spacetime 185
 7.1 Equations of Motion 185
 7.2 Particle Trajectories 188
 7.3 Kepler’s Law 196
 7.4 Light Propagation 200
 7.5 Ray-Triming in Schwarzschild Spacetime 211
 7.6 Black Hole as a Gravitational Lens 215
 7.7 Radiation from an Object Moving Around the Black Hole 223
 7.8 Equations of Motion in ‘Tilted’ Spherical Coordinates 230
 7.9 Magnetized Schwarzschild Black Hole 230
 7.10 Particle and Light Motion Near Higher-Dimensional Black Holes 236

8 Rotating Black Holes 242
 8.1 Kerr Spacetime 242
 8.2 Ergosphere, Horizon 246
 8.3 Particle and Light Motion in Equatorial Plane 257
 8.4 Spinning up the Black Hole 268
 8.5 Geodesics in Kerr Spacetime: General Case 272
 8.6 Light Propagation 276
 8.7 Hidden Symmetries of Kerr Spacetime 286
 8.8 Energy Extraction from a Rotating Black Hole 289
 8.9 Black Holes in External Magnetic Field 293

9 Classical and Quantum Fields near Black Holes 298
 9.1 Introduction 298
 9.2 Static Field in the Schwarzschild Spacetime 299
 9.3 Dimensional Reduction 302
 9.4 Quasinormal Modes 307
 9.5 Massless Fields in the Kerr Spacetime 314
Contents

9.6 Black Hole in a Thermal Bath
9.7 Hawking Effect
9.8 Quantum Fields in the Rindler Spacetime
9.9 Black Hole Thermodynamics
9.10 Higher-Dimensional Generalizations

10 Black Holes and All That Jazz
10.1 Asymptotically Flat Spacetimes
10.2 Black Holes: General Definition and Properties
10.3 Black Holes and Search for Gravitational Waves
10.4 ‘Black Holes’ in Laboratories
10.5 Black Holes in Colliders?
10.6 Higher-Dimensional Black Holes
10.7 Wormholes
10.8 ‘Time Machine’ Problem

Appendix A Fundamental Constants and Units
A.1 Fundamental Constants
A.2 Planck Units
A.3 Conversion Factors
A.4 Various Scales of Masses
A.5 Milky Way Galaxy Observational Data
A.6 Universe Observational Data
A.7 Dimensionless Entropy (S/k_B)

Appendix B Gauss–Codazzi Equations
B.1 Gauss–Codazzi Equations
B.2 Static Surface in a Static Spacetime

Appendix C Conformal Transformations

Appendix D Hidden Symmetries
D.1 Conformal Killing Tensor
D.2 Killing–Yano Tensors
D.3 Primary Killing Vector
D.4 Properties of the Primary Killing Vector
D.5 Secondary Killing Vector
D.6 Darboux Basis
D.7 Canonical Form of Metric
D.8 Separation of Variables in Canonical Coordinates
D.9 Higher-Dimensional Generalizations
D.10 Higher-Dimensional Kerr-NUT-(A)dS Metric

Appendix E Boundary Term for the Einstein–Hilbert Action
E.1 An Example Illustrating the Problem
E.2 Boundary Term for the Einstein–Hilbert Action
E.3 Boundary Term for the Euclidean Einstein–Hilbert Action
Appendix F Quantum Fields

F.1 Classical Oscillator 435
F.2 Quantum Oscillator 437
F.3 Quantum Field in Flat Spacetime 442
F.4 Quantum Theory in (1+1)-Spacetime 454

References 463

Index 477