Applied Regression Analysis THIRD EDITION Norman R. Draper Harry Smith ## Contents | Preface | xiii | |--|---------| | About the Software | xvii | | 0 Basic Prerequisite Knowledge 0.1 Distributions: Normal, <i>t</i> , and <i>F</i> , 1 0.2 Confidence Intervals (or Bands) and f-Tests, 4 0.3 Elements of Matrix Algebra, 6 | 1 | | 1 Fitting a Straight Line by Least Squares 1.0 Introduction: The Need for Statistical Analysis, 15 1.1 Straight Line Relationship Between Two Variables, 18 1.2 Linear Regression: Fitting a Straight Line by Least Squares, 20 1.3 The Analysis of Variance, 28 1.4 Confidence Intervals and Tests for /30 and fiu 34 1.5 F-Test for Significance of Regression, 38 1.6 The Correlation Between X and Y, 40 1.7 Summary of the Straight Line Fit Computations, 44 1.8 Historical Remarks, 45 Appendix 1A Steam Plant Data, 46 Exercises are in "Exercises for Chapters 1-3", 96 | 15
0 | | 2 Checking the Straight Line Fit 2.1 Lack of Fit and Pure Error, 47 2.2 Testing Homogeneity of Pure Error, 56 2.3 Examining Residuals: The Basic Plots, 59 2.4 Non-normality Checks on Residuals, 61 2.5 Checks for Time Effects, Nonconstant Variance, Need for Transformation, and Curvature, 62 2.6 Other Residuals Plots, 67 | 47 | VI CONTENTS | | 2.7 Durbin-Watson Test, 69 2.8 Reference Books for Analysis of Residuals, 70 Appendix 2A Normal Plots, 70 Appendix 2B MINITAB Instructions, 76 Exercises are in "Exercises for Chapters 1-3", 96 | | |---|---|-----| | 3 | Fitting Straight Lines: Special Topics | 79 | | | 3.0 Summary and Preliminaries, 79 3.1 Standard Error of Y, 80 3.2 Inverse Regression (Straight Line Case), 83 3.3 Some Practical Design of Experiment Implications of Regression, 86 3.4 Straight Line Regression When Both Variables Are Subject to Error, 89 | | | | Exercises for Chapters 1-3, 96 | | | 4 | Regression in Matrix Terms: Straight Line Case | 115 | | | 4.1 Fitting a Straight Line in Matrix Terms, 115 4.2 Singularity: What Happens in Regression to Make X'X Singular? An Example, 125 4.3 The Analysis of Variance in Matrix Terms, 127 4.4 The Variances and Covariance of b₀ and b\ from the Matrix Calculation, 128 4.5 Variance of Y Using the Matrix Development, 130 4.6 Summary of Matrix Approach to Fitting a Straight Line (Nonsingular Case), 130 4.7 The General Regression Situation, 131 Exercises for Chapter 4, 132 | | | 5 | The General Regression Situation | 135 | | | 5.1 General Linear Regression, 135 5.2 Least Squares Properties, 137 5.3 Least Squares Properties When e ~ N(0, la²), 140 5.4 Confidence Intervals Versus Regions, 142 5.5 More on Confidence Intervals Versus Regions, 143 Appendix 5A Selected Useful Matrix Results, 147 Exercises are in "Exercises for Chapters 5 and 6", 169 | | | 6 | Extra Sums of Squares and Tests for Several Parameters
Being Zero | 149 | | | 6.1 The "Extra Sum of Squares" Principle, 149 6.2 Two Predictor Variables: Example, 154 6.3 Sum of Squares of a Set of Linear Functions of Y's 162 | | CONTENTS | | Appendix 6A Orthogonal Columns in the X Matrix, 165
Appendix 6B Two Predictors: Sequential Sums of Squares, 167
Exercises for Chapters 5 and 6, 169 | | |---|--|-----| | - | 7 Serial Correlation in the Residuals and the Durbin-Watson Test 7.1 Serial Correlation in Residuals, 179 7.2 The Durbin-Watson Test for a Certain Type of Serial
Correlation, 181 7.3 Examining Runs in the Time Sequence Plot of Residuals:
Runs Test, 192 Exercises for Chapter 7, 198 | 179 | | ; | 8 More on Checking Fitted Models 8.1 The Hat Matrix H and the Various Types of Residuals, 205 8.2 Added Variable Plot and Partial Residuals, 209 8.3 Detection of Influential Observations: Cook's Statistics, 210 8.4 Other Statistics Measuring Influence, 214 8.5 Reference Books for Analysis of Residuals, 214 Exercises for Chapter 8, 215 | 205 | | • | 9.1 Testing a General Linear Hypothesis, 217 9.2 Generalized Least Squares and Weighted Least Squares, 221 9.3 An Example of Weighted Least Squares, 224 9.4 A Numerical Example of Weighted Least Squares, 226 9.5 Restricted Least Squares, 229 9.6 Inverse Regression (Multiple Predictor Case), 229 9.7 Planar Regression When All the Variables Are Subject to Error, 231 Appendix 9A Lagrange's Undetermined Multipliers, 231 Exercises for Chapter 9, 233 | 217 | | | 10 Bias in Regression Estimates, and Expected Values of Mean Squares and Sums of Squares 10.1 Bias in Regression Estimates, 235 10.2 The Effect of Bias on the Least Squares Analysis of Variance, 238 10.3 Finding the Expected Values of Mean Squares, 239 10.4 Expected Value of Extra Sum of Squares, 240 Exercises for Chapter 10, 241 | 235 | | | 11 On Worthwhile Regressions, Big <i>F's</i> , and <i>R</i> ² 11.1 Is My Regression a Useful One?, 243 11.2 A Conversion About <i>R</i> ² 245 | 243 | VIII CONTENTS | | Appendix 11A How Significant Should My Regression Be?, 247 Exercises for Chapter 11, 250 | | |----|---|-----| | 12 | Models Containing Functions of the Predictors, Including Polynomial Models | 251 | | | 12.1 More Complicated Model Functions, 251 12.2 Worked Examples of Second-Order Surface Fitting for k = 3 and k = 2 Predictor Variables, 254 12.3 Retaining Terms in Polynomial Models, 266 | | | | Exercises for Chapter 12, 272 | | | 13 | Transformation of the Response Variable | 277 | | | 13.1 Introduction and Preliminary Remarks, 27713.2 Power Family of Transformations on the Response: Box-Cox Method, 280 | | | | 13.3 A Second Method for Estimation A, 28613.4 Response Transformations: Other Interesting and Sometimes
Useful Plots, 289 | | | | 13.5 Other Types of Response Transformations, 29013.6 Response Transformations Chosen to Stabilize Variance, 291Exercises for Chapter 13, 294 | | | 14 | "Dummy" Variables | 299 | | | 14.1 Dummy Variables to Separate Blocks of Data with Different Intercepts, Same Model, 299 14.2 Interaction Terms Involving Dummy Variables, 307 14.3 Dummy Variables for Segmented Models, 311 Exercises for Chapter 14, 317 | | | 15 | Selecting the "Best" Regression Equation | 327 | | | 15.0 Introduction, 327 15.1 All Possible Regressions and "Best Subset" Regression, 329 15.2 Stepwise Regression, 335 15.3 Backward Elimination, 339 15.4 Significance Levels for Selection Procedures, 342 15.5 Variations and Summary, 343 15.6 Selection Procedures Applied to the Steam Data, 345 Appendix 15A Hald Data, Correlation Matrix, and All 15 Possible Regressions, 348 Exercises for Chapter 15, 355 | | | 40 | | 200 | | 16 | III-Conditioning in Regression Data | 369 | | | 16.1 Introduction, 36916.2 Centering Regression Data, 371 | | CONTENTS | | 16.3 Centering and Scaling Regression Data, 373 16.4 Measuring Multicollinearity, 375 16.5 Belsley's Suggestion for Detecting Multicollinearity, 376 Appendix 16A Transforming X Matrices to Obtain Orthogonal
Columns, 382 Exercises for Chapter 16, 385 | | |----|--|-----| | 17 | Ridge Regression | 387 | | | 17.1 Introduction, 387 17.2 Basic Form of Ridge Regression, 387 17.3 Ridge Regression of the Hald Data, 389 17.4 In What Circumstances Is Ridge Regression Absolutely the Correct Way to Proceed?, 391 17.5 The Phoney Data Viewpoint, 394 17.6 Concluding Remarks, 395 Appendix 17A Ridge Estimates in Terms of Least Squares Estimates, 396 Appendix 17B Mean Square Error Argument, 396 Appendix 17C Canonical Form of Ridge Regression, 397 Exercises for Chapter 17, 400 | | | 18 | Generalized Linear Models (GLIM) 18.1 Introduction, 401 18.2 The Exponential Family of Distributions, 402 18.3 Fitting Generalized Linear Models (GLIM), 404 18.4 Performing the Calculations: An Example, 406 18.5 Further Reading, 408 Exercises for Chapter 18, 408 | 401 | | 19 | Mixture Ingredients as Predictor Variables 19.1 Mixture Experiments: Experimental Spaces, 409 19.2 Models for Mixture Experiments, 412 19.3 Mixture Experiments in Restricted Regions, 416 19.4 Example 1, 418 19.5 Example 2, 419 Appendix 19A Transforming k Mixture Variables to k - 1 Working Variables, 422 Exercises for Chapter 19, 425 | 409 | | 20 | The. Geometry of Least Squares 20.1 The Basic Geometry, 427 20.2 Pythagoras and Analysis of Variance, 429 20.3 Analysis of Variance and F-Test for Overall Regression, 432 20.4 The Singular X'X Case: An Example, 433 | 427 | X CONTENTS 20.5 Orthogonalizing in the General Regression Case, 435 | | 20.7 Apper | Range Space and Null Space of a Matrix M, 437 The Algebra and Geometry of Pure Error, 439 Indix 20A Generalized Inverses M", 441 Indix Space and Space of a Matrix M, 437 Indix 20A Generalized Inverses M", 441 444 | | |----|------------|---|-----| | 21 | More | Geometry of Least Squares | 447 | | | 21.2 | The Geometry of a Null Hypothesis: A Simple Example, 447 General Case H_0 : $A(i = c)$: The Projection Algebra, 448 Geometric Illustrations, 449 | | | | | The F-Test for H_o , Geometrically, 450 | | | | | The Geometry of $R \setminus 452$ | | | | | Change in R^2 for Models Nested Via A/8 = 0, Not Involving /3 ₀ , 452 | | | | | Multiple Regression with Two Predictor Variables as a Sequence of Straight Line Regressions, 454 | | | | Exerc | ises for Chapter 21, 459 | | | 22 | Ortho | ogonal Polynomials and Summary Data | 461 | | | 22.2 | Introduction, 461 Orthogonal Polynomials, 461 Regression Analysis of Summary Data, 467 | | | | | ises for Chapter 22, 469 | | | 23 | Multi | ple Regression Applied to Analysis of Variance Problems | 473 | | | 23.1 | Introduction, 473 | | | | 23.2 | The One-Way Classification: Standard Analysis and an Example, 474 | | | | 23.3 | Regression Treatment of the One-Way Classification Example, 477 | | | | 23.4 | Regression Treatment of the One-Way Classification Using the Original Model, 481 | | | | 23.5 | Regression Treatment of the One-Way Classification:
Independent Normal Equations, 486 | | | | 23.6 | The Two-Way Classification with Equal Numbers of Observations in the Cells: An Example, 488 | | | | 23.7 | Regression Treatment of the Two-Way Classification Example, 489 | | | | 238 | 'The Two-Way Classification with Equal Numbers of
Observations in the Cells, 493 | | | | 23.9 | Regression Treatment of the Two-Way Classification with Equal Numbers of Observations in the Cells, 494 | | | | 23.10 | Example: The Two-Way Classification, 498 | | 23.11 Recapitulation and Comments, 499 | Exercises for Chapter 23, 500 | | |--|-----| | 24 An Introduction to Nonlinear Estimation | 505 | | 24.1 Least Squares for Nonlinear Models, 505 24.2 Estimating the Parameters of a Nonlinear System, 508 24.3 An Example, 518 24.4 A Note on Reparameterization of the Model, 529 24.5 The Geometry of Linear Least Squares, 530 24.6 The Geometry of Nonlinear Least Squares, 539 24.7 Nonlinear Growth Models, 543 24.8 Nonlinear Models: Other Work, 550 24.9 References, 553 Exercises for Chapter 24, 553 | | | 25 Robust Regression | 567 | | 25.1 Least Absolute Deviations Regression (Li Regression), 567 25.2 Af-Estimators, 567 25.3 Steel Employment Example, 573 25.4 Trees Example, 575 25.5 Least Median of Squares (LMS) Regression, 577 25.6 Robust Regression with Ranked Residuals (rreg), 577 25.7 Other Methods, 580 25.8 Comments and Opinions, 580 25.9 References, 581 Exercises for Chapter 25, 584 | | | 26.1 Resampling Procedures (Bootstrapping) 26.1 Resampling Procedures for Regression Models, 585 26.2 Example: Straight Line Fit, 586 26.3 Example: Planar Fit, Three Predictors, 588 , 26.4 Reference Books, 588 Appendix 26A Sample MINITAB Programs to Bootstrap Residuals for a Specific Example, 589 Appendix 26B Sample MINITAB Programs to Bootstrap Pairs for a Specific Example, 590 Additional Comments, 591 Exercises for Chapter 26, 591 | 585 | | Bibliography | 593 | | True/False Questions | 605 | | Answers to Exercises | 609 | | XII | CONTENTS | |-----|----------| | XII | CONT | | Tables | | |--|-----| | Normal Distribution, 684 | | | Percentage Points of the ^-Distribution, 686 | | | Percentage Points of the ^-Distribution, 687 | | | Percentage Points of the F-Distribution, 688 | | | Index of Authors Associated with Exercises | 695 | | Index | |