ROCK FRACTURES AND FLUID FLOW

Contemporary Understanding and Applications

Committee on Fracture Characterization and Fluid Flow U.S. National Committee for Rock Mechanics

Geotechnical Board Board on Energy and Environmental Systems Commission on Engineering and Technical Systems National Research Council

NATIONAL ACADEMY PRESS Washington, D.C. 1996

Contents

•

ŗ

EXECUTIVE SUMMARY		1
1	Rock Fractures and Fluid Flow: Practical Problems Problems Involving Fractures In Engineering Practice, 14 Appendix 1.A, Fractures in The Geysers Field, 26 Appendix 1.B, Superfund Site: Byron Salvage Yard, 27 References, 28	11
2	Physical Characteristics of Fractures and Fracture Patterns Definition and Classification, 30 Genesis of Fractures, 33 Flaws, Stress Concentration, and Fracture Initiation, 35 Fracture Propagation and Internal Structures, 42 Fracture Geometries, 44 Fracture Sets, 48 Interaction and Linkage of Joints, 52 Interaction and Linkage of Faults, 52 Fracture Zones, 56 Multiple Sets of Fractures, 63 Scaling Up Fracture Properties, 77 Implications for Fracture Network Models, 81 Appendix 2.A, Diagenetic Enhancement of Natural Fracture	29

xiii

.

167

243

Appendix 2.B, Fracture Patterns in Frontier Formation Sandstones,
Southwestern Wyoming, 88
Appendix 2.C, Role of Pore Fluids in the San Andreas Fault, 92
References, 93

3 Physical Properties and Fundamental Processes in Fractures 103 Geometric Properties And Stress Effects, 104 Single-Phase Fluid Flow in Fractures, 118 Solute Transport, 126 Two-Phase Immiscible Fluid Flow, 127 Seismic Properties, 132 Electrical Properties, 138 Summary, 146 Appendix 3.A, Seismic Displacement Discontinuity Theory, 149 Appendix 3.B, Gravity-Driven Infiltration Flow Instability, 153 Appendix 3.C, Influence of Two-Phase Structure on Fracture Permeability and Solute Transport, 156 References, 160

4 Fracture Detection Methods

Surface Methods, 172 Borehole-Borehole and Borehole-Surface Methods, 186 Single-Hole Methods, 200 Fluid Flow Monitoring Using Geophysical Methods, 219 Discussion, 222 Appendix 4.A, Directional Borehole Radar System, 224 Appendix 4.B, Summary of Conventional Log Applications in Fracture Studies, 226 Appendix 4.C, Flowmeter Case Studies, 230 Appendix 4.D, Example of Shear-Wave Anisotropy in Fractured Reservoirs, 233 References, 236

5 Hydraulic and Tracer Testing of Fractured Rocks
 Hydraulic Tests, 244
 Tracer Tests, 272
 Appendix 5.A, Example of a Conductive Network Exhibiting
 Fractal Geometry, 287
 Amondia 5.D. Using a Multiple Develop Test to Determine the

- Appendix 5.B, Using a Multiple-Borehole Test to Determine the Hydraulic Conductivity Tensor of a Rock Mass, 288
- Appendix 5.C, Using a Numerical Model and Inverse Method to Analyze a Multiple-Borehole Hydraulic Test, 290

CONTENTS

6

7

Appendix 5.D, A Radially Convergent Flow Tracer Test in a	
Fractured Chalk Formation, 292	
Appendix 5.E, A Large-Scale Flow and Tracer Experiment in	
Granite, 294	
Appendix 5.F, Diagnostic Well Test Analysis at the Fracture	
Research Investigation, 296	
Appendix 5.G, The Fracture Zone Project at Finnsjön, 303	
References, 304	
Field-Scale Flow and Transport Models	307
Development of Conceptual and Mathematical Models, 309	
Equivalent Continuum Simulation Models, 318	
Discrete Network Simulation Models, 332	
Hybrid Methods: Using Discrete Network Models in Building	
Continuum Approximations, 351	
Discrete Network Models with Scale-Dependent Properties, 358	
Models of More Complex Hydrogeological Systems, 375	
Summary, 385	
Appendix 6.A., Model Prediction Using a Continuum Approach:	
The URL Drawdown Experiment, 390	
Appendix 6.B, Percolation Theory, 393	
Appendix 6.C, Connectivity, 395	
References, 396	
Induced Changes to Fracture Systems	405
Changes in Fracture Void Geometry Due to Changes in	

Effective Stress, 406 Changes in Fracture Fluids, 426 Addition of Solids, 430 Redistribution of Existing Solids by Chemical Processes, 439 Engineering Under Uncertain Conditions, 443 Summary of Deficiencies and Research Needs, 444 Appendix 7.A, Natural Fracturing, 446 Appendix 7.B, Drainage Methods in Construction, 448 References, 450

8 Case Histories

Case History I. U.S. Geological Survey Fractured Rock Research Site Near Mirror Lake, New Hampshire, 459

Case History II. The Site Characterization and Validation Project: Stripa Mine, Sweden, 469

Case History III. Hydrocarbon Production From Fractured Sedimentary Rocks: Multiwell Experiment Site, 475 455

ţ.	 Case History IV. Investigating the Anatomy of a Low-Dipping Fracture Zone in Crystalline Rocks: Underground Research Laboratory, Manitoba, 479 Case History V. Fracture Studies in a Geothermal Reservoir: The Geysers Geothermal Field, California, 487 References, 493 	
9	 Technical Summary How Can Fractures That Are Significant Hydraulic Conductors be Identified, Located, and Characterized?, 501 How Do Fluid Flow and Chemical Transport Occur in Fracture Systems?, 510 How Can Changes to Fracture Systems be Predicted and Controlled?, 519 Reference, 524 	499
AP	PENDIX A: Committee's Statement of Task	525

527

J

xvi

9

>