Contents

Design Examples and Perspectives xvi

Preface xix

Preface to First Edition xxi

Section 1 The Structure 1

1.1 USE AND FUNCTIONALITY 3
 1.1.1 Terminology and Nomenclature 4
 1. Superstructure 4
 2. Substructure 6
 3. Appurtenances and Site-Related Features 9
 4. Miscellaneous Terms 10
 1.1.2 Structure Types and Applications 12
 1. Slab-on-Stringer 12
 2. One-Way Slab 13
 3. Steel and Concrete Box Girder 13
 4. Cable-Stayed 14
 5. Suspension 14
 6. Steel and Concrete Arch 14
 7. Truss 16

1.2 ORIGINS OF THE MODERN HIGHWAY BRIDGE 17

1.3 BRIDGE DESIGNERS AND THEIR PROJECTS 19

1.4 THE BRIDGE ENGINEERING LEXICON 21

REFERENCES 37

Section 2 Project Inception 39

2.1 PROJECT FUNDING 40
 2.1.1 User Fees 40
 2.1.2 Nonuser Fees 40
 2.1.3 Special Benefit Fees 41
 2.1.4 Private Financing 41
 2.1.5 Debt Financing 42
 2.1.6 Conclusions 42
2.2 TYPES OF DESIGN STANDARDS
 2.2.1 General Specifications - 43
 2.2.2 Material-Related Design Codes - 44
 1. Steel - 44
 2. Concrete - 44
 3. Timber - 44
 2.2.3 Use of Design Standards - 45

2.3 SITE INSPECTION
 2.3.1 The Scoping Inspection - 47
 2.3.2 Recording the Inspection - 48
 2.3.3 Rating Substructure Elements - 49
 1. Joints - 49
 2. Bearings, Bridge Seats, and Pedestals - 50
 3. Concrete Elements - 52
 4. Steel Elements - 52
 5. Timber Elements - 52
 6. Embankment - 53
 2.3.4 Rating Superstructure Elements - 54
 1. Deck and Wearing Surface - 54
 2. Primary and Secondary Members - 55
 2.3.5 Rating Appurtenance and Site-Related Elements - 56
 1. Railing - 56
 2. Drainage Systems - 57
 3. Utilities - 57
 4. Lighting and Signing - 57
 2.3.6 Inspecting for Scour - 58
 1. The Channel - 58
 2. The Substructure - 60
 2.3.7 Conclusions - 60

2.4 SITE SURVEY
 2.4.1 Topography - 61
 2.4.2 Planimetry - 62
 2.4.3 Structure Features - 63

2.5 PHYSICAL TESTING
 2.5.1 Coring - 64
 2.5.2 Delamination Testing - 64
 2.5.3 Testing for Cover - 65
 2.5.4 Measuring Steel Thickness - 65
 2.5.5 Detecting Fatigue Cracks - 66

2.6 THE INSPECTION TEAM

2.7 AS-BUILT PLANS AND OTHER RECORD DATA
 2.7.1 Supplementing As-Built Plans - 68
 1. Guard Railing - 68
 2. Drainage Facilities - 69
2.8 CONCLUSIONS

REFERENCES

Section 3 The Superstructure

3.1 SUPERSTRUCTURE TYPES

3.1.1 Steel Superstructures - 74
1. Rolled Beam - 75
2. Rolled Beam with Cover Plate - 75
3. Plate Girder - 75
4. Box Girder - 75
5. Steel Rigid Strut Frame - 75
6. Large Structures - 76

3.1.2 Concrete Superstructures - 76
1. Prestressed Concrete Girder - 76
2. Concrete Box Girder - 78
3. Concrete Slab - 79
4. Adjacent Prestressed Slab - 79
5. Concrete Rigid Frame - 79
6. Concrete Strut Frame - 79
7. Concrete Arch - 79

3.1.3 Timber Superstructures - 79
1. Glulam Timber - 80
2. Stressed-Laminated Timber Deck - 80
3. Trestle - 81
4. Truss - 81

3.1.4 Secondary Members - 81
1. Diaphragms - 81
2. Lateral Bracing - 84
3. Portal and Sway Bracing - 84

3.2 DECK TYPES

3.2.1 Noncomposite and Composite Decks - 84
3.2.2 Cast-in-Place Concrete Slab - 85
3.2.3 Precast, Prestressed Concrete Panels - 85
3.2.4 Steel Orthotropic Plate - 85
3.2.5 Steel Grid - 86
3.2.6 Timber - 86
3.2.7 Corrugated Metal - 87
3.2.8 Fiber Reinforced Polymer (FRP) - 87

3.3 WEARING SURFACE TYPES

3.3.1 Asphalt Concrete - 87
3.3.2 Latex Modified Concrete - 88
3.3 High Density–Low Slump Concrete - 88
3.4 Integrated Wearing Surface - 88

3.4 DECK JOINT TYPES
3.4.1 Open Joints - 89
3.4.2 Filled Joints - 89
3.4.3 Compression Seal Joints - 89
3.4.4 Strip Seal Joints - 90
3.4.5 Modular Joints - 91
3.4.6 Finger Plate Joints - 92
3.4.7 Sliding Plate Joints - 93
3.4.8 Conclusions - 94

3.5 DESIGN LOADS
3.5.1 Background and History - 95
3.5.2 Permanent Loads - 95
1. Dead Load - 95
2. Superimposed Dead Load - 96
3. Pressures - 96
3.5.3 Temporary Loads - 97
1. Vehicle Live Load - 97
2. Earthquake Loading - 100
3. Wind Loading - 104
4. Channel Forces - 105
5. Longitudinal Forces - 108
6. Centrifugal Forces - 109
7. Impact (Dynamic Load Allowance) - 109
8. Construction Loads - 110
3.5.4 Deformation and Response Loads - 110
1. Creep - 111
2. Shrinkage - 111
3. Settlement - 112
4. Uplift - 112
5. Thermal Forces - 113
3.5.5 Group Loading Combinations - 114
1. AASHTO Standard Specifications - 115
2. AASHTO LRFD Specifications - 116

3.6 DESIGN METHODS
3.6.1 Working Stress Design - 120
3.6.2 Limit States Design - 122
3.6.3 Background and History - 123
3.6.4 The Many Names of Working Stress and Limit States - 125
1. Allowable Stress Design - 125
2. Service Load Design - 125
3. Load Factor Design - 125
4. Strength Design - 125
5. Ultimate Strength - 126
6. Load and Resistance Factor Design - 126
3.7 **INTERNAL FORCES**
- 3.7.1 Bending Force - 127
- 3.7.2 Shear Force - 127
- 3.7.3 Torsional Force - 127
- 3.7.4 Axial Force - 128

3.8 **LOAD DISTRIBUTION**
- 3.8.1 How Loads Are Distributed - 129
- 3.8.2 Different Types of Load Distribution - 134
 1. Interior Longitudinal Members - 134
 2. Exterior Longitudinal Members - 134
 3. Transverse Members - 135
 4. Multibeam Concrete Decks (Concrete Panels) - 136
- 3.8.3 Conclusions - 137

3.9 **CONCRETE DECK SLABS**
- 3.9.1 Effective Span Length - 139
- 3.9.2 Calculation of Bending Moment - 140
 1. Main Reinforcement Perpendicular to Traffic - 141
 2. Main Reinforcement Parallel to Traffic - 142
 3. Dead Load Moments - 144
 4. Total Factored Moment - 144
- 3.9.3 Distribution Reinforcement - 144
- 3.9.4 Minimum Slab Thickness - 146
- 3.9.5 Railing Loads - 146
- 3.9.6 AASHTO LRFD Method - 148
- 3.9.7 Slab Reinforcement Details - 149
- 3.9.8 Construction, Rehabilitation, and Maintenance - 149
 1. Increased Slab Thickness and Cover - 149
 2. Coated Reinforcement - 150
 3. Waterproofing Membrane - 150
 4. Drainage - 151
 5. Snow and Ice Removal - 154
 6. Patching - 154
 7. Sealing - 157
 8. Cathodic Protection - 158
- 3.9.9 Conclusions - 160

3.10 **COMPOSITE STEEL MEMBERS**
- 3.10.1 Composite Action - 162
- 3.10.2 Shored and Unshored Construction - 166
- 3.10.3 Effective Flange Width - 167
- 3.10.4 The Transformed Section - 169
- 3.10.5 Effects of Creep - 170
- 3.10.6 Choosing a Rolled Section - 172
 1. Compute Design Moments and Shear Forces - 172
 2. Total Factored Moment and Shear Forces - 176
 3. Choosing a Section - 177
 4. Composite Section Strength - LFD Method - 178
5. Composite Section Strength - LRFD Method - 182
6. Conclusions - 187
3.10.7 Shear Connector Design - 188
1. Fatigue - 188
2. Additional Geometric Constraints - 193
3. Effect of Stay-in-Place Forms - 194
4. Ultimate Strength - 194
3.10.8 Cover Plates - 200
1. Advantages of a Cover Plate - 201
2. Cover Plate Area - 202
3. Cover Plate Length - 202
4. Fatigue - AASHTO Standard Specifications - 204
5. Fatigue - AASHTO LRFD Specifications - 208
6. Welds - 208
7. Problems with Cover Plates - 210
3.10.9 Bearing Stiffeners with Rolled Beams - 211
3.10.10 Deflections - 212
3.10.11 Camber - 214

3.11 PLATE GIRDERS 216
3.11.1 Hybrid Girders - 217
3.11.2 Elements of a Plate Girder - 217
1. Flange Plate Thickness - 217
2. Flange Plate Economy - 218
3. Web Thickness - 218
4. Web Plate Economy - 219
5. Transverse Intermediate Stiffeners - 220
6. Transverse Intermediate Stiffener Economy - 225
7. Bearing Stiffeners - 225
8. Longitudinal Stiffeners - 226
9. Longitudinal Stiffener Economy - 228
10. Miscellaneous Economy Issues - 228
3.11.3 Lateral Bracing for Plate Girders - 229
1. Where Bracing Is Located - 229
2. Bracing as a Function of Span Length - 230
3. Placement and Types of Lateral Bracing - 230
4. Eliminating Lateral Bracing - 231
5. Economy of Lateral Bracing - 231
3.11.4 Cross-Frames for Plate Girders - 231

3.12 CONTINUOUS BEAMS 232
3.12.1 Advantages of Continuous Beams - 232
3.12.2 Rolled Sections as Continuous Beams - 233
3.12.3 Moment Distribution - 234
1. Overview - 234
2. Fixed End Moments - 235
3. Relative Beam Stiffness - 235
4. Fixity Factor - 236
5. Stiffness Factor - 236
6. Distribution Factor - 236
7. Carry Over Factor - 236
8. Method Synopsis - 237

3.12.4 Influence Lines - 237
1. General Moment Support Equation - 242
2. Unit Loads - 243
3. Influence Data at Intermediate Points - 243
4. Predefined Tables - 245
5. Using Influence Lines - 247
6. Area under an Influence Line - 249
7. Conclusions - 250

3.12.5 Alternate Method for Analysis of Continuous Beams - 253
3.12.6 Live Load on Continuous Beam Structures - 262
1. Negative Moment Using Influence Lines - 263
2. Special Load Points - 264
3. Maximum Shear - 266
4. Impact for Continuous Beams - 266

3.12.7 Composite Section in Negative Bending - 267
1. AASHTO Standard Specifications - 267
2. AASHTO LRFD Specifications - 268
3. Conclusions - 272

3.12.8 Beam Splices - 272
1. Required Strength - 273
2. Welded Splices - 274
3. Bolted Splices - 275
4. Bolted Web Splices - 278
5. Bolted Flange Splices - 278

3.12.9 Hanger Assemblies - 280

3.13 PROTECTING STEEL SUPERSTRUCTURES - 282

3.13.1 Protective Coating Systems - 282
1. Background and History - 282
2. The Nature of Steel Corrosion - 284
3. Inhibitive Primers - 286
4. Sacrificial Primers - 286
5. Barrier Coatings - 288
6. Surface Preparation - 288
7. Overcoating - 294
8. Micaceous Iron Oxide (MIO) Coatings - 295
9. Conclusions - 297

3.13.2 Containment and Disposal of Paint Waste - 298
1. Background and History - 299
2. Containment Devices - 300
3. Recycling Abrasives - 305
4. Disposal Methods - 306
5. Conclusions - 307

3.13.3 Weathering Steel - 309
1. Background and History - 309
2. Material Properties of Weathering Steel - 309
3. Environmental Considerations - 310
4. Maintenance of Weathering Steel - 310
5. Inspection of Weathering Steel - 311
6. Rehabilitation of Weathering Steel - 312
7. Conclusions - 312

3.13.4 Galvanizing - 313
1. Overview - 313
2. Benefits and Drawbacks - 314

3.13.5 Conclusions - 314

3.14 LOAD RATING
3.14.1 Inventory and Operating Ratings - 315
3.14.2 Field Measurements and Inspection - 316
3.14.3 Loading the Structure - 316
3.14.4 Working Stress Method - 317
1. Steel and Wrought Iron - 318
2. Conventionally Reinforced and Prestressed Concrete - 319
3. Timber - 319
3.14.5 Load Factor Method - 319
3.14.6 LRFD Method - 321
1. Overview - 322
2. The Concept of Safe Evaluation - 322
3. Conclusions - 323

3.15 PRESTRESSED CONCRETE
3.15.1 Overview of Prestressed Concrete - 325
1. Pretensioned Beams - 326
2. Posttensioned Beams - 327
3. Application of Pre- and Posttensioned Concrete - 328
4. Prestressing Steels - 328
5. Concrete for Prestressing - 330
3.15.2 Composite Beams - 330
1. Advantages - 330
2. Effective Flange Width - 332
3. Horizontal Shear - 334
3.15.3 Required Prestress Force - 336
3.15.4 Loss of Prestress - 342
1. Elastic Shortening of Concrete - 342
2. Shrinkage of Concrete - 344
3. Creep of Concrete - 346
4. Friction - 346
5. Relaxation of Prestressing Steel - 349
6. Total Loss - 350
7. Estimated Losses - 350
3.15.5 Allowable Stresses - 350
3.15.6 Flexural Strength - 351

3.16 PRESTRESSED CONCRETE MAINTENANCE
3.16.1 Overview - 353
3.16.2 Deterioration of Prestressed Concrete - 354
1. Cracking - 355
2. Other Forms of Concrete Corrosion - 356
3. Deterioration of Prestressing Steel - 356
3.16.3 Inspection of Prestressed Concrete - 356
3.16.4 Rehabilitation of Prestressed Concrete - 358
 1. Patching - 359
 2. Permanent Formwork - 359
 3. Crack Injection - 360
 4. Sealers - 361
 5. Strengthening - 361
 6. Conclusions - 361

REFERENCES

Section 4 The Substructure

4.1 ABUTMENTS
 4.1.1 Types of Abutments - 370
 1. Gravity Abutment - 371
 2. U Abutment - 371
 3. Cantilever Abutment - 371
 4. Full Height Abutment - 372
 5. Stub Abutment - 372
 6. Semi-Stub Abutment - 372
 7. Counterfort Abutment - 372
 8. Spill-through Abutment - 373
 9. Pile Bent Abutment - 373
 10. MSE Systems - 374
 4.1.2 Coulomb Earth Pressure Theory - 375
 4.1.3 Abutment Stability - Service Load Design Method - 380
 4.1.4 Load Factor Design Method - 382
 4.1.5 Load and Resistance Factor Design Method - 382
 4.1.6 Other Related Foundation Topics - 383
 4.1.7 Mononobe - Okabe Analysis - 384
 1. Background - 384
 2. Horizontal and Vertical Seismic Coefficients - 386
 3. Basic Assumption - 388
 4. Active Earth Pressure - 388
 5. Applying Active Earth Pressure - 390
 6. Caveats - 391
 7. Superstructure Loads - 392
 4.1.8 Rehabilitation and Maintenance - 392
 1. Cracking - 392
 2. Surface Deterioration - 394
 3. Stability Problems - 394
 4. Bridge Seat Deterioration - 396
 5. Sheet Piling Abutments - 398
 6. Stone Masonry Abutments - 398
 7. MSE Systems - 398
 8. Footings - 399
 9. Piles - 400
4.2 PIERS

4.2.1 Types of Piers - 402
1. Hammerhead - 403
2. Column Bent - 404
3. Pile Bent - 404
4. Solid Wall - 405
5. Integral - 405
6. Single Column - 406

4.2.2 Behavior and Loading of Piers - 406

4.2.3 Design Criteria - 407

4.2.4 Design of Compression Members - 409
1. Load Factor Design Considerations - 410
2. Load and Resistance Factor Design Considerations - 410
3. Slenderness Effects - 410
4. Interaction Diagrams - 418

4.2.5 Rehabilitation and Maintenance - 421

4.2.6 Scour - 423
1. Overview - 424
2. Rehabilitation and Maintenance - 425
3. Replacement of Material - 425
4. Changing the Structure - 427
5. Replacing the Structure - 427

4.3 BEARINGS

4.3.1 Forces Acting on a Bearing - 428

4.3.2 Movement of Bearings - 429

4.3.3 Types of Bearings - 430
1. Rocker Bearings - 431
2. Roller Bearings - 432
3. Sliding Plate Bearings - 432
4. Pot Bearings - 432
5. Spherical Bearings - 433
6. Elastomeric Bearings - 433
7. Lead Rubber Bearings - 435

4.3.4 Rehabilitation and Maintenance - 436

REFERENCES

Section 5 Implementation & Management

5.1 THE HIGHWAY

5.1.1 Design Elements of a Highway - 440
1. Horizontal Alignment - 441
2. Vertical Alignment - 442
3. Stopping Sight Distance - 445
4. Roadway Width - 449

5.1.2 Maintenance of Traffic - 451
5.2 CONTRACT DOCUMENTS

5.2.1 Design Submissions - 454
1. Alternative Study - 454
2. Preliminary Submission - 455
3. Advanced Detail Submission - 457
4. Final Submission - 457

5.2.2 Computer Aided Design and Drafting - 457
1. File Organization - 458
2. Geometric Source Files - 460
3. The Forgotten D in CADD - 460
4. Graphic Standards and Quality Control - 461

5.2.3 Conclusions - 462

5.3 BRIDGE MANAGEMENT SYSTEMS

5.3.1 Background and History - 464
5.3.2 Inventory Database - 465
5.3.3 Maintenance Database - 466
5.3.4 Project and Network Level Analysis - 466
5.3.5 Predicting the Condition of Bridges - 467
5.3.6 Miscellaneous Decision Assisting Criteria - 468
5.3.7 Costing Models - 468
5.3.8 Optimization Models - 469
5.3.9 Building the Database - 469
5.3.10 Managing Small and Large Structures - 470
5.3.11 Current Bridge Management Systems - 471
5.3.12 BMS Link to Design of Bridges - 471
5.3.13 BMS Link to Pavement Management Systems - 474
5.3.14 GIS and Imaging Technologies - 474

REFERENCES 475

Appendix 477
Acknowledgments 479
Illustration credits 480
Index 481