Contents

Foreword James A. Wells . . . v
Preface . . . vi
Contributors . . . xv

1. Filamentous Bacteriophage Structure and Biology 1
Diane J. Rodi, Suneeta Mandava, and Lee Makowski
 I. Introduction 1
 II. Taxonomy and Genetics 3
 III. Viral Gene Products 5
 IV. Structure of the Virion 11
 V. Filamentous Bacteriophage Life Cycle 18
 VI. Phage Library Diversity 34
 VII. Biological Bottlenecks: Sources of Library Censorship 35
 VIII. Quantitative Diversity Estimation 41
 IX. Improved Library Construction 45
 References 47
2. Vectors and Modes of Display 63
Valery A. Petrenko and George P. Smith

I. Introduction 63
II. Most Display Vectors are Based on Filamentous Phage 65
III. General Cloning Vectors Based on Filamentous Phage 71
IV. Classification of Filamentous Phage Display Systems 75
V. Phage fl—The First Phage-Display Vector 77
VI. Low DNA Copy Number Display Vectors Based on fd-tet 78
VII. Diversity of Type 3 Vectors 80
VIII. Type 8 Vectors: First Lessons 81
IX. Mosaic Display in Type nn Systems 83
X. Mosaic Display in Phagemid Systems 89
XI. Vectors for C-Terminal Display 91
XII. Phage Proteins as Constraining Scaffolds 93
XIII. Conclusion 95
References 98

3. Methods for the Construction of Phage-Displayed Libraries 111
Frederic A. Fellouse and Gabor Pal

I. Introduction 111
II. Oligonucleotide-Directed Mutagenesis 112
III. Random Mutagenesis 123
IV. Combinatorial Infection and Recombination 126
V. DNA Shuffling 129
References 135

4. Selection and Screening Strategies 143
Mark S. Dennis

I. Introduction 143
II. General Considerations 144
III. The Selection Process 146
IV. Selections Methods 150
References 161

5. Phage Libraries for Detection, Diagnostics and Vaccination 179
Nienke E. van Houten and Kurt Deshayes

I. Introduction 179
II. Phage-Display Library Discovery 180
III. Diagnostics 179
IV. Phage Libraries for Development 180
V. Phage Display Library Leads 180
VI. Developing Immunoassays 181
VII. Conclusion 235
References 240

6. Exploring Protein-Protein and Peptide Libraries Displayed on Phage 255
Kurt Deshayes

I. Introduction 255
II. Extracellular Proteins 256
III. Intracellular Proteins 257
IV. Conclusions 261
References 275

7. Substrate Phage Display 280
Shuichi Ohkubo

I. Overview 280
II. Introduction 281
III. The Concept of Substrate Phage Display Research 294
IV. Application of Substrate Phage Display Research 294
V. Conclusions 305
References 308

8. Mapping Intracellular Proteins and Peptides 320
Zhaozhong Han, Ece Karattu, and Kurt Deshayes

I. Introduction 320
II. Domain-Mediated Interaction...
5. Phage Libraries for Developing Antibody-Targeted Diagnostics and Vaccines 165
 Nienke E. van Houten and Jamie K. Scott
 I. Introduction 165
 II. Phage-Display Libraries as Tools for Epitope Discovery 170
 III. Diagnostics 179
 IV. Phage Libraries for Epitope Mapping 187
 V. Phage Display Libraries for Vaccine Development 200
 VI. Developing Immunogens from Peptide Leads 218
 VII. Summary 235
 VIII. Conclusion 238
 IX. Abbreviations 239
 References 240

6. Exploring Protein-Protein Interactions Using Peptide Libraries Displayed on Phage 255
 Kurt Deshayes
 I. Introduction 255
 II. Extracellular Protein-Protein Interactions 256
 III. Intracellular Protein-Protein Interactions 268
 IV. Conclusions 274
 References 275

7. Substrate Phage Display 283
 Shuichi Ohkubo
 I. Overview 283
 II. Introduction 284
 III. The Concept of Substrate Phage Display 285
 IV. Application of Substrate Phage Display to Cancer Research 294
 V. Conclusions 305
 References 308

8. Mapping Intracellular Protein Networks 321
 Zhaozhong Han, Ece Karatan, and Brian K. Kay
 I. Introduction 321
 II. Domain-Mediated Interactions 323
III. Nondomain Mediated Protein-Protein Interactions 336
IV. Software for Identifying Candidate Interacting Partners 336
V. Analyzing Predicted Interactions 337
VI. Relevance to Biotechnology and Drug Discovery 338
References 340

9. High Throughput and High Content Screening Using Peptides 347
 Robert O. Carlson, Robin Hyde-DeRuyscher, and Paul T. Hamilton
 I. Introduction 347
 II. Peptides as Enzyme Inhibitors 348
 III. Peptides as Conformational Probes 355
 IV. Summary 376
 References 377

10. Engineering Protein Folding and Stability 385
 Mihriban Tuna and Derek N. Woolfson
 I. Protein Redesign and Design 385
 II. Early Combinatorial Studies Aimed at Repacking the Cores of Proteins 387
 III. Phage Display in Engineering Protein Stability 390
 IV. A Worked Example: Repacking the Hydrophobic Core of Ubiquitin 397
 V. Studies that Build on the Original Methods 406
 VI. Summary 408
 References 409

11. Identification of Natural Protein-Protein Interactions with cDNA Libraries 415
 Reto Crameri, Claudio Rhyner, Michael Weichel, Sabine Flückiger, and Zoltan Konthur
 I. Overview 415
 II. Introduction 416
 III. Cloning Vectors 417

IV. Display of cDNA Libraries on Phage Libraries 340
V. Problems Associated with Phage Display Libraries 341
VI. Adaptability of Phage Screening Technology 342
VII. Conclusions 419
References 420

12. Mapping Protein Function Using Peptides 415
 Sara K. Avrantinis and Christopher Woolf
 I. Introduction 416
 II. Single Point Alanine Scan 417
 III. Combinatorial Site-Specific Mutagenesis 418
 IV. Other Approaches to Mapping Protein Function 419
 V. Conclusion 420
 References 421

13. Selections for Enzyme Catalysis Using Phage Display 431
 Julian Bertschinger, Christopher Woolf
 I. Introduction 432
 II. Selection Methods 433
 III. Discussion 434
 References 435

14. Antibody Humanization Using Phage Display 449
 Jonathan S. Marvin and Christopher Woolf
 I. Introduction 450
 II. Humanization Using Phage Display 451
 III. In Vitro Affinity Maturation 452
 IV. Emerging Approaches to Antibody Engineering 453
 V. Conclusions 454
 References 455

15. Antibody Libraries from Repertoires 473
 Jody D. Berry and Michael Weichel
 I. Introduction 474
 II. Immune Antibody Libraries from Repertoires 475
Contents

IV. Display of cDNA Libraries on Phage Surface 420
V. Problems Associated with the Display of cDNA Libraries on Phage Surface 425
VI. Adaptability of Phage Display to High-Throughput Screening Technology 427
VII. Conclusions 428
References 429

12. Mapping Protein Functional Epitopes 441
Sara K. Avrantinis and Gregory A. Weiss
I. Introduction 441
II. Single Point Alanine Mutagenesis 443
III. Combinatorial Site-Specific Mutagenesis 447
IV. Other Approaches to Phage-Displayed Functional Epitope Mapping 455
V. Conclusion 456
References 456

13. Selections for Enzymatic Catalysts 461
Julian Bertschinger, Christian Heinis, and Dario Neri
I. Introduction 461
II. Selection Methods 464
III. Discussion 482
References 486

14. Antibody Humanization and Affinity Maturation Using Phage Display 493
Jonathan S. Marvin and Henry B. Lowman
I. Introduction 493
II. Humanization Using Phage Display 497
III. In Vitro Affinity Maturation of Antibodies 501
IV. Emerging Approaches 519
V. Conclusions 520
References 521

15. Antibody Libraries from Immunized Repertoires 529
Jody D. Berry and Mikhail Popkov
I. Introduction 529
II. Immune Antibody Library Construction 538
III. Immune Antibody Library Selection 570
IV. The Future 622
 References 624

16. Naive Antibody Libraries from Natural
 Repertoires ... 659
 Claire L. Dobson, Ralph R. Minter, and
 Celia P. Hart-Shorrock
 I. Introduction 659
 II. Construction of Naive Libraries 660
 III. Applications of Naive Libraries 674
 IV. Summary 700
 References 700

17. Synthetic Antibody Libraries 709
 Frederic A. Fellouse and Sachdev S. Sidhu
 I. Introduction 709
 II. The Scripps Research Institute 711
 III. The Medical Research Council 714
 IV. Morphosys 720
 V. Genentech 726
 VI. Conclusions 732
 References 733

Index .. 741