Welcome and Opening Remarks

Digital Consumer Electronics Evolution in the Multimedia and Network Age p. 1

The Silicon Opportunity of the New Millennium - Digital Information Appliances p. 5

High Performance 50-nm Physical Gate Length pMOSFETs by using Low Temperature Activation by Re-Crystallization Scheme p. 9

A 0.18 [μm] CMOS Logic Technology with Dual Gate Oxide and Low-k Interconnect for High-Performance and Low-Power Applications p. 11

Novel integration technology with Capacitor Over Metal (COM) by using Self-Alignled Dual Damascene (SADD) process for 0.15 [μm] stand-alone and embedded DRAMs p. 13

A 0.22 [μm] CMOS-SOI Technology with a Cu BEOL p. 15

A Low Voltage Erase Technique for DINOR Flash Memory Devices p. 17

A Novel High Performance and Reliability p-Type Floating Gate N-Channel Flash EEPROM p. 19

A 0.9V Operation 2-Transistor Flash Memory for Embedded Logic LSIs p. 21

Suppression of Anomalous Leakage Current in Tunnel Oxides by Fluorine Implantation to Realize Highly Reliable Flash Memory p. 23

0.18 [μm] Metal Gate Fully-Depleted SOI MOSFETs for Advanced CMOS Applications p. 25

Minimizing Body Instability in Deep Sub-micron SOI MOSFETs for Sub-1V RF Applications p. 27

SON (Silicon On Nothing) - A New Device Architecture for the ULSI ERA p. 29

High Performance Fully and Partially Depleted Poly-Si Surrounding Gate Transistors p. 31

A DRAM technology using MIM BST capacitor for 0.15 [μm] DRAM generation and beyond p. 33

Aluminum Word Line and Bit Line Fabrication Technology for COB DRAM Using a Polysilicon-Aluminum Substitute p. 35

A New Process Integration - P[^3] (Pre Poly Plug) - for Giga Bit DRAM Era p. 37

Highly Reliable MIM Capacitor Technology Using Low Pressure CVD-WN Cylinder Storage-Node for 0.12 [μm]-scale Embedded DRAM p. 39

A Novel Clustered Hard Mask Technology for Dual Damascene Multilevel Interconnects with Self-Alignled Via Formation Using an Organic Low k Dielectric p. 41

Slotted Vias for Dual Damascene Interconnects in 1Gb DRAMs p. 43

High Performance Cu Interconnects with Low-k BCB-polymers by Plasma-enhanced Monomer-vapor Polymerization (PE-MVP) method p. 45

Low-k SiN Film for Cu Interconnects Integration Fabricated by Ultra Low Temperature Thermal CVD p. 47

Co Salicide Compatible 2-step Activation Annealing Process for Deca-nano Scaled MOSFETs p. 49

A source/drain formation technology utilizing sub-10 keV arsenic and assist-phosphorus implantation for 0.13 [μm] MOSFET p. 51

 Improvement of CoSi[subscript 2] Stability on Fine Grain Sized Poly-Si Using Nitrogen Implantation Through Co Monosilicide and Its Effect on 0.18 [μm] Dual Gate CMOS p. 53
Low Resistance Co-Salicided 0.1 [mu]m CMOS Technology Using Selective Si Growth p. 55
A Concept of Gate Oxide Lifetime Limited by "B-mode" Stress Induced Leakage Currents in Direct Tunneling Regime p. 57
Temperature acceleration of oxide breakdown and its impact on ultra-thin gate oxide reliability p. 59
Dielectric Breakdown Mechanism of Thin-SiO[subscript 2] Studied by the Post-breakdown Resistance Statistics p. 61
C-V and Gate Tunneling Current Characterization of Ultra-Thin Gate Oxide MOS (t[subscript ox] = 1.3-1.8nm) p. 63
An Efficient Lateral Channel Profiling of Poly-SiGe-Gated PMOSFET's for 0.1 [mu]m CMOS Low-Voltage Applications p. 65
Indium Tilted Channel Implantation Technology for 60nm nMOSFET p. 67
Channel Engineering for High Speed Sub-1.0V Power Supply Deep Sub-micron CMOS p. 69
Channel Engineering for 0.2 [mu]m Surface Channel pMOSFETs Using Electron Beam Irradiation p. 71
The impact on bias temperature instability for direct-tunneling ultra-thin gate oxide on MOSFET scaling p. 73
Severe Thickness Variation of Sub-3nm Gate Oxide Due to Si Surface Faceting, Poly-Si Intrusion, and Corner Stress p. 75
Quantum Effect in Oxide Thickness Determination From Capacitance Measurement p. 77
100nm Channel Length MNSFETs using a Jet Vapor Deposited Ultra-thin Silicon Nitride Gate Dielectric p. 79
Alpha-SER Modeling and Simulation for Sub-0.25 [mu]m CMOS Technology p. 81
Substrate Enhanced Gate Current: Device Design and Temperature Impact and Disturbs in Programming Flash Memories with Negative Body Bias p. 83
Novel Bi-Directional Tunneling NOR (BiNOR) Type 3-D Flash Memory Cell p. 85
A Self-Aligned Split-Gate Flash EEPROM Cell with 3-D Pillar Structure p. 87
65nm physical gate length NMOFETs with heavy ion implanted pockets and highly reliable 2nm-thick gate oxide for 1.5V operation p. 89
Smart pockets - total suppression of roll-off and roll-up p. 91
0.1-[mu]m CMOS with Shallow and Steep Source/Drain Extensions Fabricated by Using Rapid Vapor-phase Doping (RVD) p. 93
Work Function Controlled Metal Gate Electrode on Ultrathin Gate Insulators p. 95
Leakage-current mechanism of a tantalum-pentoxide capacitor on rugged Si with a CVD-TiN plate electrode for high-density DRAMs p. 99
In-situ Multi-Step (IMS) CVD Process of (Ba,Sr)TiO[subscript 3] using Hot Wall Batch Type Reactor for DRAM Capacitor Dielectrics p. 101
A Self-aligned Stacked Capacitor using Novel Pt Electroplating Method for 1 Gbit DRAMs and Beyond p. 103
A 0.18 [mu]m High-Performance Logic Technology p. 105
A 0.10-[mu]m CMOS Device with a 40-nm Gate Sidewall and Multilevel Interconnects for System LSI p. 107
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Realization of 0.1 (\mu)m Buried-Channel PMOSFETs by Device Restructuring Using Tilted Well Implantation Technology</td>
<td>109</td>
</tr>
<tr>
<td>Integration of 3 Level Air Gap Interconnect for Sub-quarter Micron CMOS Technology Challenges for Scaled Cu/Low k Interconnects</td>
<td>111</td>
</tr>
<tr>
<td>Gate Insulator; Hi-k vs. SiO(_2) Flash vs. FeRAM: Which is the real winner? SOI: What are the roadblocks, if any, to become a mainstream technology?</td>
<td>113</td>
</tr>
<tr>
<td>High-integrity Ultra-thin Silicon Nitride Film Grown at Low Temperature for Extending Scaling Limit of Gate Dielectric High Performance and Highly Reliable Deep Submicron CMOSFETs using Nitrided-Oxide Improvement of 1/f noise by using VHP (Vertical High Pressure) oxynitride gate insulator for deep-sub micron RF and analog CMOS New Optimization Guidelines for Sub-0.1 (\mu)m CMOS Technologies with 2 nm NO Gate Oxynitriles Node connection / quantum phase-shifting mask - Path to below 0.3-um pitch, proximity effect free random interconnect and memory patterning New Radical Injection Method for High-Performance and Chargeless Dielectric Etching Balanced Electron Drift Oxide Etcher with Xe Added Gas Chemistry for Low Cost and High Performance Contact Metallization Re-distribution of Cu contamination in advanced high-speed CMOS and its influence on device characteristics A Reliable 0.1 (\mu)m Ta(_2)O(_5) Transistor Manufactured with an Almost Standard CMOS Process Sub-Quarter Micron CMOS Process for TiN-Gate MOSFETs with TiO(_2) Gate Dielectric formed by Titanium Oxidation Device and Reliability of High-K Al(_2)O(3) Gate Dielectric with Good Mobility and Low D({1t}) Ultra Thin high quality stack nitride/oxide gate dielectrics prepared by in-situ rapid thermal N(_2)O oxidation of NH(3)-nitrided Si Fully functional 0.5-(\mu)m 64-kbit embedded SBT FeRAM using a new low temperature SBT deposition technique A FRAM technology using 1T1C and triple metal layers for high performance and high density FRAMs AI-Interconnect/Cu-Plug Structure for FeRAM Multilevel Interconnect A New 1T/2C Merged Two-Terminal Gain Cell with SBT Encapsulated Floating Gate MOSFET for Highly Scalable FeRAM Transistor Design Issues in Integrating Analog Functions with High Performance Digital CMOS A 0.15-(\mu)m / 73-GHz (f\text{max}) RF BiCMOS Technology using Cobalt Silicide Ring Extrinsic-Base Structure Submicron CMOS Thermal Noise Modeling from an RF Perspective RF Noise Simulation for Submicron MOSFET's Based on Hydrodynamic Model New Embedded DRAM Technology using Self-aligned Salicide Block(SSB) Process for 0.18um SOC(System on a Chip)</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>155</td>
</tr>
</tbody>
</table>
Low-Temperature Metal/ON/HSG-Cylinder Capacitor Process for High Density Embedded DRAMs p. 157
A Novel Simple Shallow Trench Isolation (SSTI) Technology Using High Selective CeO$_2$ Slurry and Liner SiN as a CMP Stopper p. 159
Enabling Shallow Trench Isolation for 0.1 μm Technologies and Beyond p. 161
Future perspective and scaling down roadmap for RF CMOS p. 163
Compact Distributed RLC Models for Multilevel Interconnect Networks p. 165
Micro IDDQ Test using Lorentz Force MOSFET's p. 167
Monte Carlo Modeling of Threshold Variation due to Dopant Fluctuations p. 169

Table of Contents provided by Blackwell's Book Services and R.R. Bowker. Used with permission.