<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance analysis of large-scale OpenMP and hybrid MPI/OpenMP</td>
<td>5</td>
</tr>
<tr>
<td>applications with VampirNG</td>
<td></td>
</tr>
<tr>
<td>ompP : a profiling tool for OpenMP</td>
<td>15</td>
</tr>
<tr>
<td>On the interaction of tiling and automatic parallelization</td>
<td>24</td>
</tr>
<tr>
<td>Static nonconcurrency analysis of OpenMP programs</td>
<td>36</td>
</tr>
<tr>
<td>CCRG OpenMP compiler : experiments and improvements</td>
<td>51</td>
</tr>
<tr>
<td>Implementing an OpenMP execution environment on InfiniBand clusters</td>
<td>65</td>
</tr>
<tr>
<td>An introduction to Balder - an OpenMP run-time library for clusters of SMPs</td>
<td>78</td>
</tr>
<tr>
<td>Experiences with the OpenMP parallelization of DROPS, a Navier-Stokes solver written in C++</td>
<td>95</td>
</tr>
<tr>
<td>A parallel structured ecological model for high end shared memory computers</td>
<td>107</td>
</tr>
<tr>
<td>Multi-cluster, mixed-mode computational modeling of human head conductivity</td>
<td>119</td>
</tr>
<tr>
<td>An evaluation of OpenMP on current and emerging multithreaded/multicore processors</td>
<td>133</td>
</tr>
<tr>
<td>SPEC OpenMP benchmarks on four generations of NEC SX parallel vector systems</td>
<td>145</td>
</tr>
<tr>
<td>Performance evaluation of parallel sparse matrix-vector products on SGI Altix3700</td>
<td>153</td>
</tr>
<tr>
<td>The OpenMP memory model</td>
<td>167</td>
</tr>
<tr>
<td>Evaluating OpenMP on chip multithreading platforms</td>
<td>178</td>
</tr>
<tr>
<td>Experiences parallelizing a Web server with OpenMP</td>
<td>191</td>
</tr>
<tr>
<td>Automatic granularity selection and OpenMP directive generation via extended machine descriptors in the PROMIS parallelizing compiler</td>
<td>207</td>
</tr>
<tr>
<td>Nested parallelization of the flow solver TFS using the ParaWise parallelization environment</td>
<td>217</td>
</tr>
<tr>
<td>Performance characteristics of OpenMP language constructs on a many-core-on-a-chip architecture</td>
<td>230</td>
</tr>
<tr>
<td>Improving performance of OpenMP for SMP clusters through overlapped page migrations</td>
<td>242</td>
</tr>
<tr>
<td>Adding new dimensions to performance analysis through user-defined objects</td>
<td>255</td>
</tr>
<tr>
<td>Performance instrumentation and compiler optimizations for MPI/OpenMP applications</td>
<td>267</td>
</tr>
<tr>
<td>Supporting nested OpenMP parallelism in the TAU performance system</td>
<td>279</td>
</tr>
<tr>
<td>Parallelization of a hierarchical data clustering algorithm using OpenMP</td>
<td>289</td>
</tr>
<tr>
<td>OpenMP and C++</td>
<td>300</td>
</tr>
<tr>
<td>Common mistakes in OpenMP and how to avoid them : a collection of best practices</td>
<td>312</td>
</tr>
<tr>
<td>Formal specification of the OpenMP memory model</td>
<td>324</td>
</tr>
<tr>
<td>Performance and programmability comparison between OpenMP and MPI implementations of a molecular modeling application</td>
<td>349</td>
</tr>
<tr>
<td>OpenMP implementation of SPICE3 circuit simulator</td>
<td></td>
</tr>
<tr>
<td>Automatic generation of parallel code for Hessian computations</td>
<td>372</td>
</tr>
</tbody>
</table>
Geographical locality and dynamic data migration for OpenMP implementations of adaptive PDE solvers p. 382
A comparison of task pool variants in OpenMP and a proposal for a solution to the busy waiting problem p. 397
A proposal for OpenMP for Java p. 409
A proposal for error handling in OpenMP p. 422
Extending the OpenMP standard for thread mapping and grouping p. 435
Author index p. 447

Table of Contents provided by Blackwell's Book Services and R.R. Bowker. Used with permission.