Effect of Temperature Ramping on Stirred Tank Bioleaching of a Copper	p. 3
Column Bioleaching of a Saline, Calcareous Conner Sulfide Ore	n 7
Production Dovelonment of Olimpiadinskee Cold Processing Plant through	p. 7
BIONORD® Technology Processing	p. 12
Bioelectrochemical Leaching of Copper Sulfide Minerals	p. 16
Bioleaching of Supergene Porphyry Copper Ores from Sungai Mak Gorontalo of Indonesia by an Iron- and Sulfur-Oxidizing Mixotrophic Bacterium	p. 20
Comparison of Reductive and Oxidative Bioleaching of Jarosite for Valuable Metals Recovery	p. 24
The MONDO Minerals Nickel Sulfide Bioleach Project: From Test Work to Early Plant Operation	p. 28
Recent Advances in Biomining and Microbial Characterisation	p. 33
Linking Microbial Community Dynamics in BIOX® Leaching Tanks to Process Conditions: Integrating Lab and Commercial Experience	p. 38
Enzymatic Pre-Treatment of Carbonaceous Matter in Preg-Robbing Gold Ores: Effect of Ferrous Ion Additives	p. 43
Microbial Population of Industrial Biooxidation Reactors	p. 48
An XPS and XANES Study on the Bioleaching of Arsenopyrite with or without Pyrite	p. 53
Evaluation of Long-Term Post Process Inactivation of Bioleaching Microorganisms	p. 57
Bioleaching of Copper Slag Material	p. 61
Biooxidation of a Refractory Gold Ore: Implications of Whole-Ore Heap Biooxidation	p. 65
Approaches for Eliminating Bacteria Introduced during In Situ Bioleaching of Fractured Sulfidic Ores in Deep Subsurface	p. 70
Attachment of Acidithiobacillus ferrooxidans and Bioleaching of Chalcopyrite under Influence of Organic Substances Associated with Copper Solvent Extraction	p. 75
Bioleaching for Removal of Chromium and Associated Metals from LD Slag	p. 79
Examining the Effects of Typical Reagents for Sulfide Flotation on Bio-Oxidation Activity of Ferrous Iron Oxidizing Microorganisms	p. 84
Reduction of Iron(III) lons at Elevated Pressure by Acidophilic Microorganisms	p. 88
The Influence of Pyrite on Galvanic Assisted Bioleaching of Low Grade Chalcopyrite Ores	p. 93
Bio-Heap Leaching of Primary Copper Sulfide Ore by JOGMEC	p. 99
Fabrication and Application of Polyethylenimine/Ca-Alginate Blended Hydrogel Fibers as High-Capacity Adsorbents for Recovery of Gold from Acidic Solutions	p. 103
Selective Chemical and Biological Metal Recovery from Cu-Rich Bioleaching Solutions	p. 107
Bioleaching of Tailings Resulting from Benefication of Polymetallic Ores for Recovery of Valuable Metals	p. 113
Electrochemical Process Engineering in Biohydrometallurgical Metal Recovery from Mineral Sulfides	p. 118

Heap Biooxidation of Gold-Sulphide and Polymetallic Ores and Tailings	p. 122
Screening of Important Variables of Organic Acids Degradation by Phanerochaete chrysosporium Using Plackett-Burman Design in Refractory Arsenic-Bearing and Carbonaceous Gold Ores	p. 126
Biogenic Hydrogen Sulfide for Cyanide Regeneration in Solutions during Cupriferous Gold Ores Processing	p. 131
Microbial Community Analysis inside a Biooxidation Heap for Gold Recovery in Equador	p. 135
Comparative Bioleaching and Mineralogical Characterization of Black Shale-Hosted Ores and Corresponding Flotation Concentrates	p. 139
Effect of X-Ray μCT Scanning on the Growth and Activity of Microorganisms in a Heap Bioleaching System	p. 143
Pilot-Scale Bioleaching of Metals from Pyritic Ashes	p. 147
The Use of Heap Bioleaching as a Pre-Treatment for Platinum Group Metal Leaching	p. 151
Bioleaching Experiments on a Low-Grade Complex Zinc Ore from Inner Mongolia	p. 155
Investigation of Intermediates Evolutions during Bornite Bioleaching by Mesophilic Mixed Bacteria	p. 159
A Comparison of Bioleaching Behavior of Two Pure Chalcopyrite Minerals through Investigating Chalcopyrite Crystallographic Properties	p. 164
Effect of Marmatite on Bioleaching Behaviors of Chalcopyrite	p. 168
Influence of Citrate on Metal Dissolution and Respiration Rate of Microbial Leaching Cultures	p. 172
Research on Bio-Leaching of Nickel-Bearing Tailings in Jilin, China	p. 177
Recovery of Copper from Pyritic Copper Ores Using a Biosurfactant-Producing Mixotrophic Bacterium as Bioflotation Reagent	p. 181
Insights into Heap Bioleaching at the Agglomerate-Scale	p. 185
Comparative Variants of Microbial Pretreatment and Subsequent Chemical Leaching of a Gold-Bearing Sulphide Concentrate	p. 189
Biosynthesis of Copper Nanoparticles Using Aqueous Extracts of Aloe vera and Geranium and Bioleaching Solutions	p. 193
Nickel Bioleaching at Elevated pH: Research and Application	p. 197
Biological Production of Copper Sulfide Concentrate from Flotation Tailings and Low Grade Ore	p. 202
Biodesulfurization of a Coarse-Grained High Sulfur Coal in a Full-Scale Packed-Bed Bioreactor	p. 207
Pyrite Oxidation by Moderately Thermophilic Microorganisms	p. 211
Biooxidation of a High-Grade Arsenopyritic Gold Ore Using a Mixed Culture of Moderate Thermophilic Microorganisms	p. 215
Microbial Survey on Industrial Bioleaching Heap by High-Throughput 16S Sequencing and Metagenomics Analysis	p. 219
Preliminary Study on In Situ Realtime Quantitation of Target Bacteria on the Principle of Flow Cytometry	p. 224
Investigating the Microbial Metabolic Activity on Mineral Surfaces of Pyrite-Rich Waste Rocks in an Unsaturated Heap-Simulating Column System	p. 228

The Impact of Heap Self-Heating on Microbial Activity during the Bioleaching of Low-Grade Copper Sulfide Ores	p. 233
Bioleaching of Low-Grade Chalcopyrite Ore by the Thermophilic Archaean Acidianus brierleyi	p. 237
Influence of CO2 Supplementation on the Bioleaching of a Copper Concentrate from Kupferschiefer Ore	p. 242
Unravelling the Complexity of Heap Bioleaching	p. 246
Copper Heap Bioleach Microbiology - Progress and Challenges	p. 250
Microbial Dissolution of Iron Surface Coatings in Industrial Minerals	p. 255
Characterization and Localized Insight into Leaching of Sulfide Minerals	p. 261
Method for the Recovery of Indium from Diluted Bioleaching Solutions	p. 265
Changes in Metal Leachability through Stimulation of Iron Reducing Communities within Waste Sludge	p. 269
Mechanism of Silver-Catalyzed Bioleaching of Enargite Concentrate	p. 273
Bioleaching of Chalcopyrite with Two Different Metallogenic Types: A Mineralogical Perspective	p. 277
Investigation of Controlled Redox Potential with Pyrite during Chalcopyrite Bioleaching by Mixed Moderately Thermophiles	p. 281
From Knowledge to Best Practices in Bioleaching	p. 285
Microbial Community Composition of Mine Wastes in Cornwall and West Devon (UK)	p. 290
Incorporation of Indigenous Microorganisms Increases Leaching Rates of Rare Earth Elements from Western Australian Monazite	p. 294
Reductive Dissolution of a Lateritic Ore Containing Rare Earth Elements (REE) Using Acidithiobacillus Species	p. 299
The Mechanism of In and Ge Occurrence in Sphalerite Crystal and the Influence on Properties: A DFT (Density Function Theory) Simulation	p. 303
Innovative Biohydrometallurgical Approaches in the EU Project FAME	p. 307
Fabrication of Magnetic Polymer Composite Sorbents and its Application for Recovery of Platinum from Acidic Solution	p. 311
Process and Cost Improved Agitator Solutions for Bioleach Reactors	p. 315
In Situ Characterization and Molecular Mechanisms Evaluation of Interfacial Interaction between Minerals and Bioleaching Microorganisms	p. 321
Mineralogical Dynamics of Primary Copper Sulfides Mediated by Acidophilic Biofilm Formation	p. 325
Molecular Regulatory Network Involved in Biofilm Structure Development by Acidithiobacillus thiooxidans Includes Pel Exopolysaccharide Machinery	p. 330
Mineral Specific Biofilm Formation of "Acidibacillus ferrooxidans" Huett2	p. 334
16S rRNA and Multilocus Phylogenetic Analysis of the Iron Oxidizing Acidophiles of the Acidiferrobacteraceae Family	p. 339
Proteins Binding to Immobilized Rusticyanin Detected by Affinity Chromatography	p. 344
Inhibition Kinetics of Iron Oxidation by Leptospirillum ferriphilum to Residual Thiocyanate Present in Bioremediated Cyanidation Tailings Wastewater	p. 350
Fungal Mineralization Processes in Rio Tinto	p. 354

Genetic Basis of Metal Resistance in Acidiphilium sp. DSM 27270 (Yenapatur)	p. 358
Microorganisms Oxidize Iron (II) Ions in the Presence of High Concentrations of Sodium Chloride - Potentially Useful for Bioleaching	p. 364
Expression of Candidate Cold Stress and Metabolic Related Genes in Acidithiobacillus ferrivorans PQ33 Strain Using Ferrous Iron as Electron Donor	p. 368
Bioleaching of Pyrite by Iron-Oxidizing Acidophiles under the Influence of Reactive Oxygen Species	p. 372
Transcription Dynamics of CBB-Pathway Genes in Acidithiobacillus thiooxidans Growing under Different CO2 Levels	p. 376
Microbial Ferrous Ion Oxidation versus Ferric Ion Precipitation at Low Temperature Conditions	p. 381
Comparative Study of NaCl-Tolerance Mechanisms in Acidophilic Iron-Oxidizing Bacteria and Archaea	p. 385
Use of Specific Metal Binding of Self-Assembling S-Layer Proteins for Metal Bioremediation and Recycling	p. 389
Biochemical Aspects of Energy Metabolism in Sulfobacillus thermotolerans	p. 394
Adhesion Studies of Microorganisms on Natural Ore Material	p. 398
The Effect of Initial Solution pH on Surface Properties of Ferric Ion Precipitates Formed during Biooxidation of Ferrous Ion by Leptospirillum ferriphilum	p. 403
The Mechanism of Skutterudite Acid Leaching: A DFT Study of H+ Effect on CoO (010) Surface	p. 408
Production of Amphiphilic Hydroxamate Siderophores Marinobactins by Marinobacter sp. DS40M6 for Bioflotation Process	p. 413
In Situ Characterization of Superficial Organic Composition Changes of Thermoacidophilic Archaea Acidianus manzaensis YN-25 in Response to Energy Substrate	p. 417
Construction of a Cell Surface Engineered Yeast Aims to Selectively Recover Molybdenum, a Rare Metal	p. 421
Introduction to High-Throughput Sequencing Technologies and Review of its Application in Bioleaching	p. 425
Type IV Secretion Systems Diversity in the Acidithiobacillus Genus	p. 429
EPS Characterization of a Cell Wall-Lacking Archaeon Ferroplasma acidiphilum	p. 434
Metagenome-Derived Draft Genome Sequence of Acidithiobacillus ferrooxidans RV1 from an Abandoned Gold Tailing in Neuquén, Argentina	p. 439
Phage Display - A Promising Tool for the Recovery of Valuable Metals from Primary and Secondary Resources	p. 443
Simplified Expression and Production of Small Metal Binding Peptides	p. 447
Investigation of Fluoride Tolerance in Acidithiobacillus ferrooxidans	p. 452
Potential Bioleaching Effects in In Situ Recovery Applications	p. 456
Identification of Sulfur Activation Relevant Protein Genes of Extremely Thermophilic Acidianus manzaensis	p. 461
Evolution of Compositions and Contents of Capsule and Slime EPSs for Adaptation to and Action on Energy Substrates and Heavy Metals by Typical Bioleaching Microorganisms	p. 466

Resistance of Moderately Thermophilic Acidophilic Microorganisms to Ferric Iron lons	p. 471
Effect of Galactose on EPS Production and Attachment of Acidithiobacillus thiooxidans to Mineral Surfaces	p. 476
Molecular Response of the Acidophilic Iron Oxidizer "Ferrovum" sp. JA12 to the Exposure to Elevated Concentrations of Ferrous Iron	p. 482
The Surface Chemistry Characterization of Pyrite, Sphalerite and Molybdenite after Bioleaching	p. 487
Monitoring of Biofilm Development on Surfaces Using an Electrochemical Method	p. 492
EIS Studies of Chalcopyrite Involving Iron(II) Ions	p. 496
Thermochelin, a Hydroxamate Siderophore from Thermocrispum agreste DSM 44070	p. 501
Siderophore Purification via Immobilized Metal Affinity Chromatography	p. 505
Revisiting the Chrome Azurol S Assay for Various Metal lons	p. 509
Gallium Mobilization in Soil by Bacterial Metallophores	p. 513
On the Immobilization of Desferrioxamine-Like Siderophores for Selective Metal Binding	p. 517
Are there Viruses in Industrial Bioleaching Econiches?	p. 521
Diversity of Thermophilic Iron-Pyrite-Oxidizing Enrichments from Solfataric Hot Springs in the Chilean Altiplano	p. 526
Comparative Analysis of Functional Gene Diversity of Acid Mine Drainage and its Sediment by Geochip Technology	p. 531
Investigation of a Bioflotation Interface with Infrared Spectroscopy	p. 537
Leaching of Pyrite by Acidithiobacillus ferrooxidans Monitored by Electrochemical Methods	p. 541
X-Ray Diffraction of Iron Containing Samples: The Importance of a Suitable Configuration	p. 545
Biogenic Iron Compounds for Hazardous Metal Remediation	p. 551
Optimization of Bioscorodite Crystallization for Treatment of As(III)-Bearing Wastewaters	p. 555
Chemical vs. Biological Crystals, all the Same?	p. 559
Microbial Recycling of Precious and Rare Metals Sourced from Post-Consumer Products	p. 563
Microbial Production of Schwertmannite: Development from Microbial Fundamentals to Marketable Products	p. 568
Rare Earth Elements Recovery and Sulphate Removal from Phosphogypsum Waste Waters with Sulphate Reducing Bacteria	p. 573
The Use of Algal Biomass to Sustain Sulfidogenic Bioreactors for Remediating Acidic Metal-Rich Waste Waters	p. 577
Integrated Sulfate Reduction and Biosorption Process for the Treatment of Mine Drainages	p. 582
Detoxification of Heap after Gold Leaching Using Biodegradation	p. 587
Development of Metal Ion Binding Peptides Using Phage Surface Display Technology	p. 591
Recycling of Florescent Phosphor Powder Y2O3:Eu by Leaching Experiments	p. 596

Analysis of Microbial Communities Associated with Bioremediation Systems for Thiocyanate-Laden Mine Water Effluents	p. 601
pH and Soil Additive-Depending Uptake of Various Metals and Metalloids by Helianthus tuberosus from a Uranium Containing Test Field Site	p. 605
Biosorption of Heavy Metals Using Organic Waste from Tequila Processing	p. 609
South African Coal Tailings Bioflotation for Desulphurization Using Mycobacterium phlei	p. 613
Bioleaching of Cadmium from Contaminated Paddy Fields by Consortium of Autotrophic and Indigenous Cadmium-Tolerant Bacteria	p. 617
Bioremediation of Complex Pollutants from the Oil Industry Containing Cobalt and Molybdenum Catalysts	p. 622
Biodegradation of Thiocyanate and Cyanide in CIL Leaching Waste's Liquid Phase	p. 626
Utilization of Fe-Oxide Composites for as Removal from Aqueous Solutions	p. 630
Intensification of Arsenic and Zinc Mobilization by Combination of Bio-Chemical Leaching with EDTA in the Soil and Sediment Bioremediation	p. 634
Comparative Analysis of the Sulfate-Reducing Performance and Microbial Colonisation of Three Continuous Reactor Configurations with Varying Degrees of Biomass Retention	p. 638
Investigation of the Ga Complexation Behaviour of the Siderophore Desferrioxamine B	p. 643
Removal of Arsenic from Aqueous Solution by Aeromonas hydrophila	p. 647
In Situ Bioremediation of Tailings by Sulfate Reducing Bacteria and Iron Reducing Bacteria: Lab- and Field-Scale Remediation of Sulfidic Mine Tailings	p. 651
Immobilization of Arsenic by a Thermoacidophilic Mixed Culture with Pyrite as Energy Source	p. 656
Genomic Characterization of the Arsenic-Tolerant Actinobacterium, Rhodococcus erythropolis S43	p. 660
Microbiological As(III) Oxidation and Immobilization as Scorodite at Moderate Temperatures	p. 664
Investigating the Bioleaching of an Arsenic Mine Tailing Using a Mixed Mesophilic Culture	p. 668
Manganese Removal from Metal Refinery Wastewater Using Mn(II)-Oxidizing Bacteria	p. 673
Microbially Catalysed Selenate Removal in an Inverse Fluidised Bed Reactor	p. 677
Evaluation of Substrate Consumption Kinetics in Different Support Materials for Biotrickling Filters Aiming Biogas Desulfurization	p. 682
Adsorption of Chromium (VI) and Desorption as Chromium (III) from the Aqueous Chromium (VI) Solution Using Persimmon Gel	p. 687
Optimization of Ni, Cu and Zn Recovery in Bioleaching of Electronic Scrap	p. 692
Bioleaching of Valuable Components from a Pyrometallurgical Final Slag	p. 696

Table of Contents provided by Blackwell's Book Services and R.R. Bowker. Used with permission.