Anatomical Heart Models and Mechanics

An Anatomical Heart Model with Applications to Myocardial Activation and Ventricular Mechanics p. 3

Large-Scale Finite Element Analysis of the Beating Heart p. 27

Cardiac Fluid Dynamics p. 51

Grids and Bioelectric Models

Structured and Unstructured Grid Generation p. 63

Skeletal Muscle Grids for Assessing Current Distributions from Defibrillation Shocks p. 113

Inverse Problems and Computational Methods

The Electrocardiographic Inverse Problem p. 135


Distributed Computing and Biomechanics

High-Performance Computing, High-Speed Networks, and Configurable Computing Environments: Progress Toward Fully Distributed Computing p. 185


Bone Remodeling Around Total Hip Implants p. 263

HPC and Cardiac Electrophysiology

A Multidimensional Model of Cellular Effects on the Spread of Electrotonic Currents and on Propagating Action Potentials p. 289

Cardiac Propagation Simulation p. 319

Models of the Spreading of Excitation in Myocardial Tissue p. 359

The Use of Spectral Methods in Bidomain Studies p. 403

HPC and Visualization

Visualization of Bioelectric Phenomena p. 429

Impact of Massively Parallel Computation on Protein Structure Determination p. 447

High-Performance Computing in Radiation Cancer Treatment p. 465

The Future

Grand Challenges in Biomedical Computing p. 479

Index p. 505

Table of Contents provided by Blackwell's Book Services and R.R. Bowker. Used with permission.