Reliability growth for military vehicles - emerging methodology and remaining challenges p. 1
Thermal analysis of composite integral armor p. 9
Application of reliability-based design optimization to durability of military vehicles p. 25
Finite element simulations of composite vehicle structures under impact loading p. 35
Upgrading readiness : successes and improvements of the mobile parts hospital p. 49
Advanced high load, quick change run flat system for pneumatic wheeled vehicles p. 57
Rapidly installed fluid transfer system (RIFFS) p. 61
A strength-enhanced, high efficiency carbon foam radiator p. 69
A nondestructive inspection system for the inspection of wear surfaces in tank track shoes p. 77
Compare and contrast military vs. commercial ground vehicle supportability p. 85
Objective force cost module (OFCM) for vehicle systems and subsystems p. 93
Robotic technologies for the future force - the ART STO p. 99
In search of efficient walking robots p. 107
Case study of the evaluation and verification of a PackBot model in NRMM p. 113
Suspension trade studies for hybrid electric combat vehicles p. 119
Vehicle model robustness : a case study of the FMTV military truck model p. 127
Improved powertrain control for an HE-HMMWV p. 133
Predictive semi-analytical model for tire-snow interaction p. 141
Military vehicle (FCS MGV) electrical systems modeling and simulation p. 153
Using 3D multi-body simulation to evaluate future truck technologies p. 161
An environment for model-based development of ground vehicles p. 171
Treatment of constrained multibody dynamic systems with uncertainties p. 187
A composite linear and nonlinear approach to full-vehicle simulator control p. 199
Modeling, simulation and design space exploration of a MTV 5.0 ton cargo truck in MSC-ADAMS p. 211
Estimating statistical performance of ground vehicles p. 221
A new method for vehicle-terrain interaction research p. 231
A building block approach to modeling soldier performance in military combat platforms p. 245
SantosTM : a new generation of virtual humans p. 251
Motion prediction and inverse dynamics for human upper extremities p. 265
A combat vehicle gun fire simulator for analyzing crew shock loading p. 275
Proposed integrated human figure modeling analysis approach for the army's future combat systems p. 281
Effects of ride motion on reaction times for reaching tasks p. 293
Combat vehicle engine selection methodology based on vehicle integration considerations p. 301
Development of an ultra-high pressure ratio turbocharger p. 309
A high power density, commercially based, diesel engine for FCS vehicles p. 319
Opposed piston opposed cylinder (opoc) engine for military ground vehicles p. 329
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dual-use engine calibration: leveraging modern technologies to improve performance - emissions tradeoff</td>
<td>371</td>
</tr>
<tr>
<td>Modeling, control and analysis of mover for an electric transmission system of tracked vehicle</td>
<td>383</td>
</tr>
<tr>
<td>Microbiological contamination in JP-8 fuel</td>
<td>389</td>
</tr>
<tr>
<td>Evaluation of commercial, biodegradable, synthetic or biosourced hydraulic fluid for use in military combat/tactical vehicles</td>
<td>395</td>
</tr>
<tr>
<td>Evaluation of DOD army aviation filters</td>
<td>403</td>
</tr>
<tr>
<td>Re-refined lubricants and the US military - current and future directions</td>
<td>409</td>
</tr>
<tr>
<td>Fischer-Tropsch fuels: why are they of interest to the United States military?</td>
<td>415</td>
</tr>
<tr>
<td>Evaluation of sensors for on-board diesel oil condition monitoring of U.S. army ground equipment</td>
<td>423</td>
</tr>
<tr>
<td>Corrosion preventing characteristics of military hydraulic fluids</td>
<td>429</td>
</tr>
<tr>
<td>Nanostructured electrode materials for high rate, large format lithium ion batteries</td>
<td>435</td>
</tr>
<tr>
<td>An electromagnetic micro power generator for low-frequency environmental vibrations</td>
<td>439</td>
</tr>
<tr>
<td>Micromachined accelerometers for inertial navigation applications</td>
<td>443</td>
</tr>
<tr>
<td>The current development of nanofluid research</td>
<td>451</td>
</tr>
</tbody>
</table>

Table of Contents provided by Blackwell's Book Services and R.R. Bowker. Used with permission.