Preface

Preface to the third printing

Contents

Linear codes

Linear codes

Properties of a linear code

At the receiving end

More about decoding a linear code

Error probability

Shannon's theorem on the existence of good codes

Hamming codes

The dual code

Construction of new codes from old (II)

Some general properties of a linear code

Summary of Chapter 1

Notes on Chapter 1

Nonlinear codes, Hadamard matrices, designs and the Golay code

Nonlinear codes

The Plotkin bound

Hadamard matrices and Hadamard codes

Conferences matrices

t-designs

An introduction to the binary Golay code

The Steiner system S(5, 6, 12), and nonlinear single-error correcting codes

An introduction to the Nordstrom-Robinson code

Construction of new codes from old (III)

Notes on Chapter 2

An introduction to BCH codes and finite fields

Double-error-correcting BCH codes (I)

Construction of the field GF(16)

Double-error-correcting BCH codes (II)

Computing in a finite field

Notes on Chapter 3

Finite fields

Introduction

Finite fields: the basic theory

Minimal polynomials

How to find irreducible polynomials

Tables of small fields

The automorphism group of GF(p[superscript m])
The automorphism group of a code p. 229
The Mattson-Solomon polynomial p. 239
Some weight distributions p. 251
Notes on Chapter 8 p. 255
BCH codes
 Introduction p. 257
 The true minimum distance of a BCH code p. 259
 The number of information symbols in BCH codes p. 262
 A table of BCH codes p. 266
 Long BCH codes are bad p. 269
 Decoding BCH codes p. 270
 Quadratic equations over $\text{GF}(2^{[\text{superscript m}]})$ p. 277
 Double-error-correcting BCH codes are quasi-perfect p. 279
 The Carlitz-Uchiyama bound p. 280
 Some weight distributions are asymptotically normal p. 282
 Notes on Chapter 9 p. 291
Reed-Solomon and Justesen codes
 Introduction p. 294
 Reed-Solomon codes p. 294
 Extended RS codes p. 296
 Idempotents of RS codes p. 296
 Mapping $\text{GF}(2^{[\text{superscript m}]})$ codes into binary codes p. 298
 Burst error correction p. 301
 Encoding Reed-Solomon codes p. 301
 Generalized Reed-Solomon codes p. 303
 Redundant residue codes p. 305
 Decoding RS codes p. 306
 Justesen codes and concatenated codes p. 306
 Notes on Chapter 10 p. 315
MDS codes
 Introduction p. 317
 Generator and parity check matrices p. 318
 The weight distribution of an MDS code p. 319
 Matrices with every square submatrix nonsingular p. 321
 MDS codes from RS codes p. 323
 n-arcs p. 326
 The known results p. 327
 Orthogonal arrays p. 328
 Notes on Chapter 11 p. 329
Alternant, Goppa and other generalized BCH codes
Introduction

Alternant codes

Goppa codes

Further properties of Goppa codes

Extended double-error-correcting Goppa codes are cyclic

Generalized Srivastava codes

Chien-Choy generalized BCH codes

The Euclidean algorithm

Decoding alternant codes

Notes on Chapter 12

Reed-Muller codes

Introduction

Boolean functions

Reed-Muller Codes

RM codes and geometries

The minimum weight vectors generate the code

Encoding and decoding (I)

Encoding and decoding (II)

Other geometrical codes

Automorphism groups of the RM codes

Mattson-Solomon polynomials of RM codes

The action of the general affine group on Mattson-Solomon polynomials

Notes on Chapter 13

First-order Reed-Muller codes

Introduction

Pseudo-noise sequences

Cosets of the first-order Reed-Muller code

Encoding and decoding R(1, m)

Bent functions

Notes on Chapter 14

Second-order Reed-Muller, Kerdock and Preparata codes

Introduction

Weight distribution of second-order Reed-Muller codes

Weight distribution of arbitrary Reed-Muller codes

Subcodes of dimension 2m of R(2, m)* and R(2, m)

The Kerdock code and generalizations

The Preparata code

Goethals’ generalization of the Preparata codes

Notes on Chapter 15

Quadratic-residue codes
<table>
<thead>
<tr>
<th>Notes on Chapter 18</th>
<th>p. 594</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-dual codes and invariant theory</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>p. 596</td>
</tr>
<tr>
<td>An introduction to invariant theory</td>
<td>p. 598</td>
</tr>
<tr>
<td>The basic theorems of invariant theory</td>
<td>p. 607</td>
</tr>
<tr>
<td>Generalizations of Gleason's theorems</td>
<td>p. 617</td>
</tr>
<tr>
<td>The nonexistence of certain very good codes</td>
<td>p. 624</td>
</tr>
<tr>
<td>Good self-dual codes exist</td>
<td>p. 629</td>
</tr>
<tr>
<td>Notes on Chapter 19</td>
<td>p. 633</td>
</tr>
<tr>
<td>The Golay codes</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>p. 634</td>
</tr>
<tr>
<td>The Mathieu group M_{24}</td>
<td>p. 636</td>
</tr>
<tr>
<td>M_{24} is five-fold transitive</td>
<td>p. 637</td>
</tr>
<tr>
<td>The order of M_{24} is $24.23.22.21.20.48$</td>
<td>p. 638</td>
</tr>
<tr>
<td>The Steiner system $S(5, 8, 24)$ is unique</td>
<td>p. 641</td>
</tr>
<tr>
<td>The Golay codes g_{23} and g_{24} are unique</td>
<td>p. 646</td>
</tr>
<tr>
<td>The automorphism groups of the ternary Golay codes</td>
<td>p. 647</td>
</tr>
<tr>
<td>The Golay codes g_{11} and g_{12} are unique</td>
<td>p. 648</td>
</tr>
<tr>
<td>Notes on Chapter 20</td>
<td>p. 649</td>
</tr>
<tr>
<td>Association schemes</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>p. 651</td>
</tr>
<tr>
<td>Association schemes</td>
<td>p. 651</td>
</tr>
<tr>
<td>The Hamming association scheme</td>
<td>p. 656</td>
</tr>
<tr>
<td>Metric schemes</td>
<td>p. 659</td>
</tr>
<tr>
<td>Symplectic forms</td>
<td>p. 661</td>
</tr>
<tr>
<td>The Johnson scheme</td>
<td>p. 665</td>
</tr>
<tr>
<td>Subsets of association schemes</td>
<td>p. 666</td>
</tr>
<tr>
<td>Subsets of symplectic forms</td>
<td>p. 667</td>
</tr>
<tr>
<td>t-designs and orthogonal arrays</td>
<td>p. 670</td>
</tr>
<tr>
<td>Notes on Chapter 21</td>
<td>p. 671</td>
</tr>
<tr>
<td>Tables of the best codes known</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>p. 673</td>
</tr>
<tr>
<td>Figure 1, a small table of $A(n, d)$</td>
<td>p. 683</td>
</tr>
<tr>
<td>Figure 2, an extended table of the best codes known</td>
<td>p. 690</td>
</tr>
<tr>
<td>Figure 3, a table of $A(n, d, w)$</td>
<td>p. 691</td>
</tr>
<tr>
<td>Finite geometries</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>p. 692</td>
</tr>
<tr>
<td>Finite geometries, $PG(m, q)$ and $EG(m, q)$</td>
<td>p. 692</td>
</tr>
<tr>
<td>Properties of $PG(m, q)$ and $EG(m, q)$</td>
<td>p. 697</td>
</tr>
<tr>
<td>Projective and affine planes</td>
<td>p. 701</td>
</tr>
</tbody>
</table>
Notes on Appendix B p. 702
Bibliography p. 703
Index p. 757

Table of Contents provided by Blackwell's Book Services and R.R. Bowker. Used with permission.