The changes in microvascular architecture of hair follicle by scanning electron microscopy p. 153
Morphological and histochemical characterization of the human vellus hair follicle p. 157
Recognition of cellular differentiation in the human hair follicle at the light microscope level using SACPIC staining p. 161
Characterization of LHTric-1, a new monospecific monoclonal antibody to the trichocyte keratin Ha1 p. 167
Human trichohyalin p. 169
The Jackson Laboratory: repository for spontaneous and induced mouse mutations and information on the genetics and pathology of mice p. 175
Studies on biochemical indices in C3H mouse model as hair cycle markers p. 179
Linear hair growth rate and diameter of hairs grown in vitro: a relevant correlation p. 183
The effects of removing the lower follicle bulb on human hair follicles maintained in vitro p. 187
Reconstitution of hair follicles by rotation culture p. 191
Innervation and vasculature of the normal human and alopecia areata (AA) hair follicle: an immunohistochemical and laser scanning confocal microscopic study p. 197
Ultrastructural and immunohistological changes of the follicular keratinocytes in alopecia areata: comparison from active lesion, stable lesion and non-lesional scalp p. 203
Increased apoptosis in the perilesional hair follicles of active alopecia areata may not be mediated by Fas antigen p. 209
Evaluation of PCNA, cyclin been and bcl-2 protein in normal anagen hair follicles and hair follicles of alopecia areata p. 213
The clinical phase of alopecia areata is related to lymphocyte subsets p. 217
Expression of T-cell receptor V(β)-chains in alopecia areata p. 221
Incidence and significance of single stranded DNA antibodies in alopecia areata p. 227
Hair follicle structures targeted by antibodies in alopecia areata p. 233
Alopecia areata is associated with antibodies to hair follicle-specific antigens located predominantly in the proliferative region of hair follicles p. 237
Cytokines characteristic of alopecia areata regulate the expression of ICAM-1 and MHC class I and II molecules in cultured dermal papilla cells p. 243
Interleukin 1[β] stimulation of interleukin-6 production by cultured dermal papilla cells in alopecia areata p. 249
Hair follicle specific autoantibodies associated with alopecia areata in sera from the DEBR rat model and humans p. 253
Effects of potent immunotherapies, oral cyclosporin A and topical FK506 in the DEBR rat model for alopecia areata p. 259
Hair growth in the skin grafts from alopecia areata grafted onto severe combined immunodeficient (SCID) nude mice p. 265
Genetics and mechanisms of alopecia areata: a mouse model p. 271
Double blind placebo controlled study of Dapsone in the treatment of alopecia areata p. 275
Systemic cyclosporine and low dose prednisone in the treatment of chronic severe alopecia areata: a clinical and immunopathologic evaluation p. 279

A clinical and psychological study on alopecia in children p. 281

New views on androgens and scalp hair follicle function p. 287

HAIRAN syndrome p. 289

Involvement of androgens in vivo and in vitro during the dorsal hair growth of castrated rat p. 293

Androgen induction of follicular epithelial cell growth is mediated via insulin-like growth factor-1 from dermal papilla cells p. 297

Testosterone inhibits the capacity of cultured balding scalp dermal papilla cells to produce keratinocyte mitogenic factors p. 303

Dermal papilla cells in macaque alopecia trigger a testosterone-dependent inhibition of follicular cell proliferation p. 307

Testosterone or IGF-1 stimulates hair growth in whole organ culture only in androgen-dependent red deer hair follicles p. 311

Transplantation of vellus hair in male pattern baldness to nude mice p. 315

Testosterone conditioned nude mice: an improved model for experimental monitoring of human hair production by androgen dependent balding scalp grafts p. 319

An easy method to detect candidate genes associated with androgenetic alopecia p. 323

RNA-levels of 5[alpha]-reductase and androgen receptor in human skin, hair follicles and follicle-derived cells p. 327

Expression of androgen receptor, type I and type II 5[alpha]-reductase in human dermal papilla cells p. 333

Expression of steroid 5[alpha]-reductase I and II in scalp skin in normal controls and in androgenetic alopecia p. 339

A comparison of the hair growth characteristics of Thai and Caucasian men with male pattern baldness p. 341

Effects of a topical type I 5[alpha]-reductase inhibitor, LY-191704, on scalp hair growth and sebum in balding stumptail macaques p. 345

Stimulation of follicular regrowth by androgen receptor blocker (RU58841) in macaque androgenetic alopecia p. 349

RU58841 a new therapeutic agent affecting androgen receptor molecular interactions in human hair follicles p. 355

Topical 0.05% finasteride significantly reduced serum DHT concentrations, but had no effect in preventing the expression of genetic hair loss in men p. 359

Clinical studies on the effects of oral finasteride, a type II 5[alpha]-reductase inhibitor, on scalp hair in men with male pattern baldness p. 363

The sebaceous gland p. 369

Characterization of FAR-17a, androgen regulated gene expression in sebaceous glands p. 371

Preputial cell culture as a model system to study sebocyte development p. 375

The improved organ maintenance of the human sebaceous gland: modelling in vitro the effects of epidermal growth factor and steroid hormones p. 381

Human sebocyte cultures are an appropriate model for studying sebaceous gland function at the cellular level p. 387
Is the sebaceous gland important for inner root sheath breakdown? p. 393

Immunocytochemical studies on hair-follicular stem cells and their intracytoplasmic neuronal factors p. 399

Involvement of vasoactive intestinal peptide (VIP) and VIP-receptor in hair follicle growth? p. 403

VEGF mRNA expression in different stages of the human hair cycle: analysis by confocal laser microscopy p. 407

HMG-CoA reductase activity and regulation in the isolated human hair follicle p. 413

Characterization of expression and modulation of cell-surface antigens on cultured human dermal papilla cells p. 417

Sequential expression of TGF-[beta] and its receptors during hair growth phases in mice p. 421

Altered hair follicle morphogenesis in epidermal growth factor receptor deficient mice p. 425

Local injection of hepatocyte growth factor/scatter factor (HGF/SF) promotes hair follicle growth in vivo p. 433

Induction of anagen by topical application of potent immunosuppressor FK506 in telogen mouse p. 437

The role of insulin-like growth factor I in hair follicle growth p. 439

The investigation of insulin-like growth factor-I (IGF-I) receptors on the hair follicles of seasonal and non-seasonal fibre producing goats and deer antler velvet p. 443

Hair induction by dermal papilla cells cultured with conditioned medium of keratinocytes p. 447

Inflammatory cytokines cascade in the pilosebaceous unit: interleukin-1 as a putative co-actor of androgenetic alopecia? p. 453

IL-1 and IL-1-RA expression in cultured dermal papilla cells is regulated by cytokines p. 457

[actual symbol not reproducible] channel openers inhibit the bradykinin-induced increase of intracellular calcium in hair follicle outer root sheath keratinocytes p. 463

Minoxidil potentiates the mitogenic properties of growth factors in vitro in the absence of streptomycin p. 467

Minoxidil sulfate effect on internal calcium of the cells in epidermis and epidermal appendages p. 471

The motility of cultured dermal cells from human follicles-stimulation by rat papilla cell conditioned medium p. 475

Beard dermal papilla cells secrete more stem cell factor in culture than non-balding scalp cells or dermal fibroblasts p. 481

Author index p. 489

Subject index p. 495

Colour plates