FOIL: A Midterm Report

Inductive Logic Programming: Derivations, Successes and Shortcomings

Inductive Logic Programming

Two Methods for Improving Inductive Logic Programming Systems

Generalization under Implication by Using Or-Introduction

On the Proper Definition of Minimality in Specialization and Theory Revision

Predicate Invention in Inductive Data Engineering

Subsumption and Refinement in Model Inference

Some Lower Bounds for the Computational Complexity of Inductive Logic Programming

Improving Example-Guided Unfolding

Probabilistic Approaches to Learning

Bayes and Pseudo-Bayes Estimates of Conditional Probabilities and Their Reliability

Induction of Recursive Bayesian Classifiers

Inductive Learning

Decision Tree Pruning as a Search in the State Space

Controlled Redundancy in Incremental Rule Learning

Getting Order Independence in Incremental Learning

Feature Selection Using Rough Sets Theory

Learning in Dynamic Environments

Effective Learning in Dynamic Environments by Explicit Context Tracking

COBBIT - A Control Procedure for COBWEB in the Presence of Concept Drift

Genetic Algorithms

Genetic Algorithms for Protein Tertiary Structure Prediction

SIA: A Supervised Inductive Algorithm with Genetic Search for Learning Attributes based Concepts

SAMIA: A Bottom-up Learning Method Using a Simulated Annealing Algorithm

Inductive Logic Programming

Predicate Invention in ILP - an Overview

Functional Inductive Logic Programming with Queries to the User

A Note on Refinement Operators

An Iterative and Bottom-up Procedure for Proving-by-Example

Learnability

Learnability of Constrained Logic Programs

Complexity Dimensions and Learnability

Can Complexity Theory Benefit from Learning Theory?

Learning from Time Dependent Data

Learning Domain Theories Using Abstract Background Knowledge

Discovering Patterns in EEG-Signals: Comparative Study of a Few Methods

Learning to Control Dynamic Systems with Automatic Quantization
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inductive Learning and Applications</td>
<td></td>
</tr>
<tr>
<td>Refinement of Rule Sets with JoJo</td>
<td>378</td>
</tr>
<tr>
<td>Rule Combination in Inductive Learning</td>
<td>384</td>
</tr>
<tr>
<td>Using Heuristics to Speed up Induction on Continuous-Valued Attributes</td>
<td>390</td>
</tr>
<tr>
<td>Integrating Models of Knowledge and Machine Learning</td>
<td>396</td>
</tr>
<tr>
<td>Exploiting Context when Learning to Classify</td>
<td>402</td>
</tr>
<tr>
<td>IDDD: An Inductive, Domain Dependent Decision Algorithm</td>
<td>408</td>
</tr>
<tr>
<td>An Application of Machine Learning in the Domain of Loan Analysis</td>
<td>414</td>
</tr>
<tr>
<td>Neural Network Learning</td>
<td></td>
</tr>
<tr>
<td>Extraction of Knowledge from Data using Constrained Neural Networks</td>
<td>420</td>
</tr>
<tr>
<td>Integrated Learning Architectures</td>
<td>429</td>
</tr>
<tr>
<td>An Overview of Evolutionary Computation</td>
<td>442</td>
</tr>
<tr>
<td>ML Techniques and Text Analysis</td>
<td>460</td>
</tr>
<tr>
<td>Authors Index</td>
<td>471</td>
</tr>
</tbody>
</table>

Table of Contents provided by Blackwell's Book Services and R.R. Bowker. Used with permission.