A Tribute to Fernando De Castro on the Centennial of His Birth
Prolegomena: Chemoreception Upstream of Transmitters
Daniel J. C. Cunningham: Oration at His Funeral Service
Re-Examination of the Carotid Body Ultrastructure with Special Attention to Intercellular Membrane Appositions
Two Morphological Types of Chemoreceptor Afferents Innervate the Rabbit Carotid Body
Mitochondrial Division, Blood Vessel Dilation, and Large Intercellular Space Expansion of Goat Carotid Body during Hypoxia
PO[subscript 4], Affinities, Heme Proteins, and Reactive Oxygen Intermediates Involved in Intracellular Signal Cascades for Sensing Oxygen
Mechanisms of Carotid Chemoreceptor Resetting after Birth: In Vitro Studies
Carotid Chemosensory Response to Caffeine in Developing Cats
Role of Potassium Channels in Hypoxic Chemoreception in Rat Carotid Body Type-I Cells
Is Cytochrome P-450 Involved in Hypoxic Inhibition of K[superscript +] Currents in Rat Type I Carotid Body Cells?
Cyclic Nucleotide Analogs Do Not Interfere with Hypoxic Inhibition of K[superscript +] Currents in Isolated Rat Type I Carotid Body Cells
Ca[superscript 2+] Channel Currents in Type I Carotid Body Cells from Normoxic and Chronically Hypoxic Rats
Metabolic Inhibitors Affect the Conductance of Low Voltage-Activated Calcium Channels in Brain Capillary Endothelial Cells
Transmembrane Currents in Capillary Endothelial Cells Are Modulated by External Mg[superscript 2+] Ions
Evaluation of Gene Expression in the Rat Carotid Body Using the Differential Display Technique
Induction of Immediate Early Response Genes by Hypoxia: Possible Molecular Bases for Systems Adaptation to Low pO[subscript 2]
Regulation of Ionic Conductances and Gene Expression by Hypoxia in an Oxygen Sensitive Cell Line
Regulation of Tyrosine Hydroxylase mRNA Stability by Oxygen in PC12 Cells
Effects of Hypoxia on the Intercellular Channel Activity of Cultured Glomus Cells
Reflections on the Carotid Nerve Sensory Discharge and Coupling between Glomus Cells
Generation of Interspike Intervals of Rat Carotid Body Chemoreceptors
The Coupling between Intracellular pH, Ion Transport, and Chemosensory Discharge
Depolarization Is a Critical Event in Hypoxia-Induced Glomus Cell Secretion
Co-Cultures of Rat Petrosal Neurons and Carotid Body Type I Cells: A Model for Studying Chemosensory Mechanisms
Responses of Cat Petrosal Ganglion Neurons Are Modified by the Presence of Carotid Body Cells in Tissue Cultures p. 195

Modifications of Carotid Body CO$_{2}$ Chemosensitivity in Vitro p. 203

Intracellular Acidosis Potentiates Carotid Chemoreceptor Responses to Hypoxia in the Absence of CO$_{2}$-HCO$_{3}$ p. 211

Central pH Chemosensitivity in the Newborn Opossum Monodelphis domestica p. 217

Simultaneous Measurements of Cytosolic Calcium Ion and pH in Cultured Superior Cervical Ganglion Cells of Rat p. 221

Release of Acetylcholine from the in Vitro Cat Carotid Body p. 227

Release of Acetylcholine from Cultured Cat and Pig Glomus Cells p. 233

Acetylcholine Elevates Intracellular Ca$^{2+}$ via Muscarinic and Nicotinic Receptors in Rat Carotid Body Type I Cells p. 239

The Presynaptic Component of a Cholinergic Mechanism in the Carotid Body Chemotransduction of Hypoxia in the Cat p. 245

Localization of Nicotinic Acetylcholine Receptors in Cat Carotid Body and Petrosal Ganglion p. 253

Effect of Acetylcholine on Intracellular Calcium of Carotid Body Cells of Adult Cats p. 257

Dopamine Efflux from the Carotid Body during Hypoxic Stimulation p. 261

Catecholamine Secretion from Glomus Cells Is Dependent on Extracellular Bicarbonate p. 267

Chronic Hypoxia Enhances Expression of Catecholamine Biosynthesizing Enzymes in Rat Carotid Body p. 275

Intracellular Ca$^{2+}$ Deposits and Catecholamine Secretion by Chemoreceptor Cells of the Rabbit Carotid Body p. 279

Dopamine D$_{2}$ Receptor mRNA Isoforms Expression in the Carotid Body and Petrosal Ganglion of Developing Rabbits p. 285

Domperidone as a Tool to Assess the Role of Dopamine within Carotid Body Chemoreception p. 291

Adenosine Increases the cAMP Content of the Rat Carotid Body in Vitro p. 299

Endothelin Modulates Chemoreceptor Cell Function in Mammalian Carotid Body p. 305

Expression and Localization of Enkephalin, Substance P, and Substance P, Receptor Genes in the Rat Carotid Body p. 313

Neuropeptide Processing Enzymes of the Carotid Body: Biochemical and Immunological Characterization of Carboxypeptidase Activity p. 319

Coexistence of Neuropeptides in the Amphibian Carotid Labyrinth: An Application of Double Immunolabelling in Combination with a Multiple Dye Filter p. 325

Secretoneurin: A Novel Carotid Body Peptide p. 329

Carbon Monoxide Excretion, Not Oxygen Secretion? p. 335

Carbon Monoxide and Carotid Body Chemoreception p. 341

Regulation of Neuronal Nitric Oxide Synthase Gene Expression by Hypoxia: Role of Nitric Oxide in Respiratory Adaptation to Low pO$_{2}$ p. 345

Coherence of Chemosensory Discharges in Cats' Carotid Nerves: Cooperative Inputs or Redundant Afferences? p. 349
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carotid Chemoreflex: Neural Pathways and Transmitters</td>
<td>357</td>
</tr>
<tr>
<td>Afferent Input from Peripheral Chemoreceptors in Response to Hypoxia and Amino Acid Neurotransmitter Generation in the Medulla</td>
<td>365</td>
</tr>
<tr>
<td>Augmented Ventilatory Response to Sustained Normocapnic Hypoxia following 100% O$_2$ Breathing in Humans</td>
<td>371</td>
</tr>
<tr>
<td>Role of Carotid Bodies in the Guinea-Pig</td>
<td>377</td>
</tr>
<tr>
<td>Effects of Continuous Intracarotid Infusion of Dopamine during Long-Term Hypoxia in Awake Goats</td>
<td>383</td>
</tr>
<tr>
<td>The Role of Carotid Body CO$_2$ during Ventilatory Acclimatization to Hypoxia in the Goat</td>
<td>387</td>
</tr>
<tr>
<td>Dynamic Sensitivity of Carotid Chemoreceptors to CO$_2$ in the Newborn Lamb</td>
<td>391</td>
</tr>
<tr>
<td>A Phospholipase C Inhibitor Impedes the Hypoxic Ventilatory Response in the Cat</td>
<td>397</td>
</tr>
<tr>
<td>Modelling the Peripheral Chemosensory Drive of Ventilation on Basis of Homogenous Sensory Units</td>
<td>405</td>
</tr>
<tr>
<td>Functional Activation of Cerebral Glucose Uptake after Carotid Body Stimulation</td>
<td>411</td>
</tr>
<tr>
<td>Prolonged Hemodynamic Effects of Intermittent, Brief Chemoreceptor Stimulation in Humans</td>
<td>421</td>
</tr>
<tr>
<td>Interaction between the Bradycardic Responses to Upper Airway Negative Pressure and Carotid Chemoreceptor Stimulation in the Anaesthetised Rabbit</td>
<td>431</td>
</tr>
<tr>
<td>Chemoreceptors in Autonomic Responses to Hypoxia in Conscious Rats</td>
<td>439</td>
</tr>
<tr>
<td>The Effect of Sympathetic Nerve Stimulation on Ventilation and Upper Airway Resistance in the Anaesthetized Rat</td>
<td>443</td>
</tr>
<tr>
<td>Ventilatory and Upper Airway Muscle Responses to Upper Airway CO$_2$ in Anaesthetized Neonatal Guinea-Pigs</td>
<td>449</td>
</tr>
<tr>
<td>Neurogenic Inflammation: A Model for Studying Efferent Actions of Sensory Nerves</td>
<td>453</td>
</tr>
<tr>
<td>Effects of Hypercapnia on Steady State, Phenylephrine-Induced Tension in Isolated Rings of Rat Pulmonary Artery</td>
<td>463</td>
</tr>
<tr>
<td>Participants List</td>
<td>471</td>
</tr>
<tr>
<td>Index</td>
<td>475</td>
</tr>
</tbody>
</table>