
| www.folio.org 1

Improving

FOLIO Architecture

Julian Ladisch

Verbundzentrale des GBV (VZG) in Göttingen, Germany

Martina Tumulla

North Rhine-Westphalian Library Service Centre (hbz) in

Cologne, Germany

European Library Automation Group (ELAG) Conference

Berlin, May 8th, 2019

| www.folio.org 2

FOLIO

Overview and

Project structure

| www.folio.org 3

FOLIO

• Aim

− Development of an open source Library Service Platform (LSP)

− Open, sustainable, innovative, flexible, expandable

− Software for librarians to manage daily work

• Target Group

− Academic and research libraries

| www.folio.org 4

FOLIO

• FOLIO is a product = software

• FOLIO is a community

• Development since 2016

− Founded as open source project by the stakeholders EBSCO, Index

Data and the OLE community (Open Library Environment)

− Designed and developed cooperatively

| www.folio.org 5

Stakeholder – EBSCO

• Funding of contracted developer teams, e.g. 25 FTEs EPAM

• Bringing in own human resources: product management,

product owners, developers, UX/UI designers

• Financial support of OLF infrastructure

• Funding of expert reports, e.g. technical evaluation (OTS-

report), security audit (planned)

| www.folio.org 6

Stakeholder – Index Data

• Bringing in own developer teams, product owners and UX/UI

designers

• Responsible for the basic technical architecture (Okapi)

• In addition: developers under contract with EBSCO

| www.folio.org 7

Stakeholder – OLE Community

• Funding by membership fees and Andrew W. Mellon Foundation

• Funding of developers and OLE staff

• Bringing in own human resources:

Product owners, developers, functional experts, project

management

• Financial support of OLF infrastructure

• Support of OLE partner projects, e.g. ERM apps

https://mellon.org/

| www.folio.org 8

OLE Community

• OLE Board

• OLE Steering Committee

• OLE Managing Director

• OLE Director of Strategies

• OLE Project Manager

| www.folio.org 9

Open Library Foundation (OLF)

• New administrative home since 2016

− Provides infrastructure (Confluence, Jira, Slack, …) and secures open

source code (GitHub) for projects in higher education

− Projects: FOLIO, OLE, GOKb, ReShare …

| www.folio.org 10

FOLIO – Committees

Product Council

Developer;

UX/UI

SIG

Convener

Product Owner

Developer;

UX/UI

SIG

Convener

PO PO

SIG

Convener

Developer;

UX/UI

Technical

Council

| www.folio.org 11

FOLIO – Special Interest Groups

SIGs und subgroups

• Metadata management

• Data import / export

• MARCcat

• Resource access

• Loans, reserves, requests

• Printing slips, Patron notices, calendar

• Off-site integration

• Resource management

• Acquisitions small group

• App interaction group

• ERM subgroup

• User management

• Internationalization

• Consortia

• Reporting

• Reporting prototype subgroup

• Privacy

• Accessibility

• System operations and management

• Data migration subgroup

| www.folio.org 12

FOLIO Releases – Q1 Bellis, April 2019

• Enhancement of basic functionalities

− Metadata management

− Circulation

− Import, note fields, document storage

− Acquisition: ordering, receiving/check-in

− ERM: usage statistics (eUsage app)

− ERM: license-, agreement- and

package management

| www.folio.org 13

FOLIO Screenshot

| www.folio.org 14

FOLIO

Architecture

| www.folio.org 15

Technical Concept

• Open platform: Library Service Platform (LSP)

• Platform provides infrastructure for functional modules

• Functional modules  self-contained programs

Can be developed independently from each other

Can be selected and installed one-by-one

Communication through interfaces

• Design based on micro-services idea

| www.folio.org 16

Technical Concept

• Promotes various support models

− Cloud based, hosting, local

− Commercial, library network, self

• Multi-tenancy

• Flexibly extendable, modular

• „Plug and play“ application

• Based on today’s requirements and aiming to future needs

| www.folio.org 17

Platform design

„APIs all the way down“

• This means that

any developer can interact with any layer in the platform, and

no component is too big to be replaced

| www.folio.org 18

Technologies

UI Toolkit, named Stripes

FOLIO comes with a default User Interface for the platform

applications. At the same time, libraries or developers can take

advantage of the UI toolkit to create a new UI as needed. The UI

toolkit leverages the React framework, an open JavaScript library for

creating user interfaces.

Basic FOLIO LMS Apps

Open source apps, e.g. ERM, acquisition, circulation, cataloguing, …

New apps can be developed, free choice of programming language

Other Apps

Build on existing apps or develop new apps, commercially or open

source

FOLIO Gateway

APIs, “Switchboard” (=communication) between user interface layer

and the database.

Tenant separation, communication via HTTP

System Layer

Central data layer (database, e.g. SQL)

Indexing, Logging, tenant configuration

CAT ERM

CIRC ACQ

IR LMS RPT

P
L

A
T

T
F

O
R

M

UI Toolkit

FOLIO Gateway “Okapi”

System Layer

| www.folio.org 19

Technologies

Frontend (= in the browser)

• JavaScript (ECMAScript 6)

• React/Redux

Backend (= on the server)

• Java 8 (Java 11 soon)

• Vert.x (asynchronous

communication)

• RAML

• PostgreSQL

 JSONB (NoSQL) and

 Relational SQL

Modern software stack of proven components

https://issues.folio.org/browse/FOLIO-1772

| www.folio.org 20

React and Redux

• Are open source JavaScript web frameworks for single-page

applications (SPAs)

• React provides a framework for rendering user-interface

components

• Redux is a data container that makes reading from and writing

to the backend easy

• https://reactjs.org/ und https://redux.js.org/

https://reactjs.org/
https://redux.js.org/
https://redux.js.org/

| www.folio.org 21

Stripes

• JavaScript program library for frontend modules

• Based on React + Redux

• Customized to Okapi‘s and FOLIO‘s needs

− Communication via Okapi to backend modules

− Granular user rights

− Locale (language, date format, …)

− Hotkeys (keyboard shortcuts)

− Logging via Okapi

• https://github.com/folio-org/stripes-core/#readme

https://github.com/folio-org/stripes-core/#readme
https://github.com/folio-org/stripes-core/#readme
https://github.com/folio-org/stripes-core/#readme
https://github.com/folio-org/stripes-core/#readme
https://github.com/folio-org/stripes-core/#readme

| www.folio.org 22

vert.x

• Library for Java

• Facilitates simple concurrency

• Avoids many problems of parallel programming

• Asynchronous communication

− Vert.x wraps a synchronous HTTP REST request
into an asynchronous interface

• Reactive programming

• Design pattern “Reactor”

• https://vertx.io/

https://vertx.io/
https://vertx.io/

| www.folio.org 23

RAML

• RAML = RESTful API Modeling Language

• Describes the interface of any module

• Generators take a RAML file and generate

− Interface documentation: https://dev.folio.org/doc/api/

− Java Code (Interfaces)

− Validation, invoked by Okapi when calling an interface:

• Sufficient user permissions?

• Correct data format?

• https://github.com/folio-org/raml-module-builder

https://dev.folio.org/doc/api/
https://github.com/folio-org/raml-module-builder
https://github.com/folio-org/raml-module-builder
https://github.com/folio-org/raml-module-builder
https://github.com/folio-org/raml-module-builder
https://github.com/folio-org/raml-module-builder
https://github.com/folio-org/raml-module-builder
https://github.com/folio-org/raml-module-builder
https://github.com/folio-org/raml-module-builder

| www.folio.org 24

Database selection

• PostgreSQL

− 2016 MongoDB proof of concept

• PostgreSQL became the DBMS of choice because it support both (!)

− relational SQL database model

− document based NoSQL database model

• NoSQL = Not-only-SQL, in this case document based (JSON

documents)

• PostgreSQL can process JSON documents as JSONB, this is an

efficient binary format where the JSON document is decomposed

allowing indexing

| www.folio.org 25

JSON

• JSON = JavaScript Object Notation

• FOLIO stores most of the data as JSONB

• Data exchange format of most FOLIO APIs is JSON

• Vert.x offers extensive JSON support, JSON is vert.x’ main

exchange format

• JSON is a very common data exchange format for

asynchronous browser server communication

– This applies to Java as well

| www.folio.org 26

Database operation

• Each storage module may start an own PostgreSQL instance

− We use this for software development

• Use a parameter to connect an external PostgreSQL installation

− We use this for our demo and test installations

− Allows for high availability and replication with PostgreSQL cluster

| www.folio.org 27

Inter-module Communication

Example: Check-out app uses three

backend modules – the module mod-

circulation combines the loan data

received from mod-circulation-storage

with the title data from mod-inventory-

storage and returns the merged data

set.

*-storage = database abstraction layer

Okapi

ui-checkout

in browser

mod-circulation

Okapi

 mod-circulation-

storage

 mod-inventory-

storage

| www.folio.org 28

Okapi

• Okapi implements API gateway pattern

• Is the tenant allowed to access the module?

• If several versions for one module run:

− Select the version that has been activated for the tenant

• Has the user sufficient access rights?

• Validating the parameters passed into the API

• Passing the API request to the module

• https://github.com/folio-org/okapi

https://github.com/folio-org/okapi
https://github.com/folio-org/okapi
https://github.com/folio-org/okapi

| www.folio.org 29

Modules

• Modules communicate via interfaces only

• Independence

• Easy to maintain, easy to exchange

• License can be selected independently per module:

− Proprietary

− Viral license like GPL or AGPL

− Permissive free license like Apache or MIT

• Select programming language and software libraries independently

− Core modules use the same software stack (Java, Vert.x, …)

| www.folio.org 30

App and Module Architecture

• Functionality is split into apps by business area

• This reduces inter-app data exchange

• Example: Check-out and Check-in are one app only

− Even if there are two buttons on the user interface

• Not: Nanoservices with mini modules

• One developer team per app

• An app usually has a GUI module, a business login module and

a data storage (access to database) module

| www.folio.org 31

Vagrant und Docker

• Install a complete FOLIO system using Ansible:

− https://github.com/folio-org/folio-ansible

• Manual installation with explanations:

− https://github.com/folio-org/folio-install/blob/master/single-server.md

• All modules as Docker containers:

− https://hub.docker.com/u/folioorg/

− https://hub.docker.com/u/folioci/

• Download a complete FOLIO system as a Vagrant box:

− https://github.com/folio-org/folio-ansible/blob/master/doc/index.md

− https://app.vagrantup.com/folio

https://github.com/folio-org/folio-ansible
https://github.com/folio-org/folio-ansible
https://github.com/folio-org/folio-ansible
https://github.com/folio-org/folio-ansible
https://github.com/folio-org/folio-ansible
https://github.com/folio-org/folio-install/blob/master/single-server.md
https://github.com/folio-org/folio-install/blob/master/single-server.md
https://github.com/folio-org/folio-install/blob/master/single-server.md
https://github.com/folio-org/folio-install/blob/master/single-server.md
https://github.com/folio-org/folio-install/blob/master/single-server.md
https://github.com/folio-org/folio-install/blob/master/single-server.md
https://github.com/folio-org/folio-install/blob/master/single-server.md
https://hub.docker.com/u/folioorg/
https://hub.docker.com/u/folioci/
https://github.com/folio-org/folio-ansible/blob/master/doc/index.md
https://github.com/folio-org/folio-ansible/blob/master/doc/index.md
https://github.com/folio-org/folio-ansible/blob/master/doc/index.md
https://github.com/folio-org/folio-ansible/blob/master/doc/index.md
https://github.com/folio-org/folio-ansible/blob/master/doc/index.md
https://app.vagrantup.com/folio

| www.folio.org 32

FOLIO

Technical

Evaluation

| www.folio.org 33

Technical Evaluation

• The technical basis and the architecture of the FOLIO platform

have been evaluated for three times:

− by members of the OLE-Community

− by EBSCO

− by Open Tech Strategies (OTS)

• All evaluations were successful, and the suggestions resulted in

improvements or prioritized issues

• The OTS report from January 2019 is online

https://opentechstrategies.com/
https://wiki.folio.org/display/TC/OTS+Project+Health+Report

| www.folio.org 34

FOLIO

Accessibility

| www.folio.org 35

Accessibility in FOLIO

Accessibility = easy to use for all, including those with disabilities

FOLIO aims at WCAG 2.1 priority AA compliance

WCAG:

• Web Content Accessibility Guidelines

• International standard for accessibility

• Required by law in many countries

• European Union law requires new websites of public sector bodies to

comply with WCAG 2.1 priority AA from 23 September 2019 on

| www.folio.org 36

Stripes Accessibility

• Stripes is FOLIO‘s GUI toolkit, provides reusable components

• Designed to be accessible

• Accessibility and usability is checked on a regular basis

− In usability labs

− During our monthly power hour

• Feedback improved Stripes components and the guidelines

• Accessibility architecture = built-in by design

https://wiki.folio.org/display/A11Y

https://ux.folio.org/docs/guidelines/accessibility/

https://wiki.folio.org/display/A11Y
https://ux.folio.org/docs/guidelines/accessibility/

| www.folio.org 37

FOLIO

Query language –

From CQL to

GraphQL

| www.folio.org 38

Query language – from CQL to GraphQL

• CQL = Contextual Query Language

− is a DBMS agnostic query language

− is used by the front-end and by back-end modules that query data records from other
back-end modules

• CQL has limitations

• Solution: A GraphQL module was added

• GraphQL supports advanced and complex queries

• This architectural improvement was possible because of FOLIO’s microservices-
like architecture

• https://dev.folio.org/reference/glossary/#cql

• https://github.com/folio-org/mod-graphql

https://dev.folio.org/reference/glossary/#cql
https://dev.folio.org/reference/glossary/#cql
https://github.com/folio-org/mod-graphql
https://github.com/folio-org/mod-graphql
https://github.com/folio-org/mod-graphql
https://github.com/folio-org/mod-graphql
https://github.com/folio-org/mod-graphql
https://github.com/folio-org/mod-graphql
https://github.com/folio-org/mod-graphql
https://github.com/folio-org/mod-graphql

| www.folio.org 39

Example GraphQL query

query {

 instance_storage_instances(query: "title=baby") {

 totalRecords

 instances {

 title

 holdingsRecords2 {

 callNumber

 holdingsItems {

 barcode

 }

 }

 }

 }

}

Join three tables:

instance, holdings, item

Return selected fields only:

totalRecords, title,

callNumbers, barcode

| www.folio.org 40

FOLIO

Tenant separation

| www.folio.org 41

Tenant in FOLIO

• Tenant = completely independent institution

− Branch library is not a tenant and uses granular hierarchical access rights.

• FOLIO supports cloud installations

• Tenants share cloud hardware and cloud software

• Strict tenant separation required

• For each combination of tenant and module we create a database
user and a logical database:

CREATE ROLE ${university}_${module} …;

CREATE SCHEMA ${university}_${module}

 AUTHORIZATION ${university}_${module};

• We have a tenantSeparation unit test

https://github.com/folio-org/raml-module-builder/blob/v24.0.0/domain-models-runtime/src/test/java/org/folio/rest/persist/PostgresClientIT.java#L386-L400

| www.folio.org 42

Tenant in FOLIO

• Each module runs the CREATE ROLE and CREATE SCHEMA

commands when a new tenant needs to be activated

• Okapi passes the credentials of a database superuser to the module

• This is an architectural deficiency for security reasons

• Better design:

− Only a central service has superuser rights

− and creates the role and the schema

− and passes the information to the module

• Architectural change recommended by OTS report and on the way

https://issues.folio.org/browse/FOLIO-1935

| www.folio.org 43

FOLIO

Additional

DBMS support

| www.folio.org 44

DBMS support: PostgreSQL + ?

• Any back-end module may use any DBMS

• RAML Module Builder (RMB) is a FOLIO software library

− Supports only PostgreSQL

− Supports PostgreSQL JSONB columns

− Reduces boilerplate code for each module

• Using RMB is the most easy way

• Most modules use it

• Some use Grails with PostgreSQL instead

− mod-licenses, mod-agreements

| www.folio.org 45

DBMS support: PostgreSQL + ?

• OTS report recommends additional DBMS back-ends

• FOLIO has postponed decision

• What do you think?

• How should FOLIO prioritize it?

| www.folio.org 46

Thank you!

Please visit us at our FOLIO booth

| www.folio.org 47

Speakers

Martina Tumulla

works as a systems librarian at the

North Rhine-Westphalian Library

Service Centre (hbz) in Cologne,

Germany. She supports FOLIO’s

development as co-convener of

ERM subgroup and is member of

Resource Management SIG,

Consortia SIG and Product Council.

tumulla@hbz-nrw.de

Julian Ladisch

works as a senior developer at the

headquarters of GBV in Göttingen,

Germany, and is active in the FOLIO

project since its beginning in 2016.

He is a member of the FOLIO

platform core developer team.

julian.ladisch@gbv.de

| www.folio.org 48

FOLIO Links

• Code on GitHub
https://github.com/folio-org

• Dev Wiki
https://dev.folio.org/

• Demo Installation
https://folio-demo.gbv.de/
https://folio-demo.hbz-nrw.de/
(diku_admin / admin)

• FOLIO project website (in German)

https://www.folio-bib.org/

• FOLIO Wiki
https://wiki.folio.org/

• OLE Community
https://www.openlibraryenvironment.org/

• Open Library Foundation (OLF)
http://www.openlibraryfoundation.org/

• FOLIO
https://www.folio.org/

https://github.com/folio-org
https://github.com/folio-org
https://github.com/folio-org
https://github.com/folio-org
https://dev.folio.org/
https://folio-demo.gbv.de/
https://folio-demo.gbv.de/
https://folio-demo.gbv.de/
https://folio-demo.hbz-nrw.de/
https://folio-demo.hbz-nrw.de/
https://folio-demo.hbz-nrw.de/
https://folio-demo.hbz-nrw.de/
https://folio-demo.hbz-nrw.de/
https://www.folio-bib.org/
https://www.folio-bib.org/
https://www.folio-bib.org/
https://wiki.folio.org/
https://www.openlibraryenvironment.org/
http://www.openlibraryfoundation.org/
https://www.folio.org/

| www.folio.org 49

Attribution-NonCommercial 4.0 International

The text of this presentation is licensed under a

 Creative Commons Attribution-NonCommercial 4.0 International License:

https://creativecommons.org/licenses/by-nc/4.0/

