Identical Parallel Machine Scheduling Problems:
Structural patterns, bounding techniques and
solution procedures

Dissertation
zur Erlangung des akademischen Grades
doctor rerum politicarum
(Dr. rer. pol.)

vorgelegt dem
Rat der Wirtschaftswissenschaftlichen Fakultät
der Friedrich-Schiller-Universität Jena

am: 02.11.2016

von: Dipl.-Math. oec. Alexander Lawrinenko
Contents

1 Introduction and overview

1.1 Introduction ... 1
 1.1.1 Production process planning 1
 1.1.2 Typical objectives for workload balancing 2
 1.1.3 Context of the doctoral thesis 3
 1.1.4 Contribution of the doctoral thesis 4
 1.1.5 Structure of the thesis 5

1.2 Overview on the six papers 7
 1.2.1 The overview article 7
 1.2.2 The article on structural patterns of $P||C_{\text{max}}$ optimal solutions 7
 1.2.3 The article on the exact solution of the $P||C_{\text{min}}$ problem 8
 1.2.4 The note on a wrong result for workload balancing 9
 1.2.5 The article on technical results for the k_i-partitioning problem 10
 1.2.6 The article on solution approaches for the minimum cardinality bin covering problem .. 11

2 A survey on the identical parallel machine scheduling problem – Bounding techniques, approximation results, and solution approaches ... 13

2.1 Introduction .. 13

2.2 Identical parallel machine scheduling 15
 2.2.1 Makespan minimization 16
 2.2.1.1 Lower bound strategies 16
 2.2.1.2 Constructive heuristics 17
 2.2.1.3 Improvement heuristics and local search approaches 18
 2.2.1.4 Meta heuristics 19
 2.2.1.5 Exact solution procedures 20
 2.2.2 Machine covering 21
 2.2.3 Workload balancing 21
 2.2.4 Job completion time based criteria 23
 2.2.5 Classification of the scheduling literature 25

2.3 Number partitioning .. 28
 2.3.1 Two-way number partitioning 28
 2.3.1.1 Multi-way number partitioning 29
 2.3.2 Balanced multi-way number partitioning 30
 2.3.3 Classification of the number partitioning literature .. 31
3 Effective solution space limitation for the identical parallel machine scheduling problem 33
3.1 Introduction ... 33
3.2 Theoretical study of the solution space 34
 3.2.1 A symmetry-breaking solution representation 34
 3.2.2 Potential optimality 34
 3.2.2.1 The two machine case 35
 3.2.2.2 The generalized case 38
3.3 Dominance criteria derived from potential optimality 40
 3.3.1 Basic dominance criterion 40
 3.3.2 Further improvements 41
3.4 A branch-and-bound algorithm 43
 3.4.1 Lower bounds 43
 3.4.2 Upper bounds 43
 3.4.3 Application of the bounds 43
 3.4.4 The branching scheme 44
 3.4.5 Dominance criteria 44
3.5 Computational study 44
 3.5.1 Performance on Dell’Amico and Martello’s instances 45
 3.5.2 Performance on benchmark instances 46
 3.5.3 Performance on Haouari and Jemmali’s instances 47
 3.5.4 Performance on further instances 48
 3.5.5 General remarks 49
3.6 Conclusions ... 49

4 Improved approaches to the exact solution of the machine covering problem 51
4.1 Introduction ... 51
4.2 Theoretical background 53
 4.2.1 Solution representation and illustration 53
 4.2.2 Potential optimality 53
4.3 Dominance criteria based on potential optimality 55
 4.3.1 The basic criterion 55
 4.3.2 Further improvements 56
4.4 A branch-and-bound algorithm 61
 4.4.1 Upper bounds 61
 4.4.1.1 A trivial bound and its worst-case ratio 61
 4.4.1.2 Improvements derived from $P|C_{\text{max}}$ 62
 4.4.1.3 Lifting procedure and further enhancement 62
 4.4.1.4 Improvements derived from bin covering 63
 4.4.1.5 Bounds derived from the solution structure ... 63
 4.4.2 Lower bounds 64
 4.4.3 Application of the bounds 65
 4.4.4 The branching scheme 65
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3.3</td>
<td>Column generation lower bound</td>
<td>110</td>
</tr>
<tr>
<td>7.4</td>
<td>Algorithms</td>
<td>112</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Construction heuristics</td>
<td>112</td>
</tr>
<tr>
<td>7.4.2</td>
<td>A subset sum-based improvement heuristic</td>
<td>113</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Exact procedure</td>
<td>114</td>
</tr>
<tr>
<td>7.5</td>
<td>Computational study</td>
<td>115</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Instance generation</td>
<td>115</td>
</tr>
<tr>
<td>7.5.2</td>
<td>Results</td>
<td>116</td>
</tr>
<tr>
<td>7.6</td>
<td>Conclusions</td>
<td>123</td>
</tr>
<tr>
<td>8</td>
<td>Conclusion of the thesis</td>
<td>125</td>
</tr>
<tr>
<td>Appendices</td>
<td>Appendix for Effective solution space limitation for the identical parallel machine scheduling problem</td>
<td>127</td>
</tr>
<tr>
<td>A.1</td>
<td>Proof of Lemma 3.2.6</td>
<td>128</td>
</tr>
<tr>
<td>A.2</td>
<td>Proof of Lemma 3.2.7</td>
<td>128</td>
</tr>
<tr>
<td>A.3</td>
<td>Compatibility issues of dominance criteria</td>
<td>129</td>
</tr>
<tr>
<td>B</td>
<td>Appendix for Improved approaches to the exact solution of the machine covering problem</td>
<td>132</td>
</tr>
<tr>
<td>C</td>
<td>German summary</td>
<td>135</td>
</tr>
<tr>
<td>D</td>
<td>Ehrenwörtliche Erklärung</td>
<td>139</td>
</tr>
<tr>
<td>E</td>
<td>Curriculum vitae</td>
<td>140</td>
</tr>
</tbody>
</table>