Contents

What’s New in the Tenth Edition 23
Acknowledgments 25
About the Author 27
Trademarks 29

Chapter 1 What Is Operations Research? 31
1.1 Introduction 31
1.2 Operations Research Models 31
1.3 Solving the OR Model 34
1.4 Queuing and Simulation Models 35
1.5 Art of Modeling 36
1.6 More than Just Mathematics 37
1.7 Phases of an OR Study 39
1.8 About this Book 41
 Bibliography 41
 Problems 42

Chapter 2 Modeling with Linear Programming 45
2.1 Two-Variable LP Model 45
2.2 Graphical LP Solution 47
 2.2.1 Solution of a Maximization Model 48
 2.2.2 Solution of a Minimization Model 50
2.3 Computer Solution with Solver and AMPL 52
 2.3.1 LP Solution with Excel Solver 52
 2.3.2 LP Solution with AMPL 56
2.4 Linear Programming Applications 59
 2.4.1 Investment 60
 2.4.2 Production Planning and Inventory Control 62
 2.4.3 Workforce Planning 67
 2.4.4 Urban Development Planning 70
 2.4.5 Blending and Refining 73
 2.4.6 Additional LP Applications 76
 Bibliography 76
 Problems 76
4.5 Post-Optimal Analysis 185
 4.5.1 Changes Affecting Feasibility 186
 4.5.2 Changes Affecting Optimality 189

Bibliography 192
Problems 192

Chapter 5 Transportation Model and Its Variants 207
 5.1 Definition of the Transportation Model 207
 5.2 Nontraditional Transportation Models 211
 5.3 The Transportation Algorithm 214
 5.3.1 Determination of the Starting Solution 216
 5.3.2 Iterative Computations of the Transportation Algorithm 220
 5.3.3 Simplex Method Explanation of the Method of Multipliers 226
 5.4 The Assignment Model 227
 5.4.1 The Hungarian Method 227
 5.4.2 Simplex Explanation of the Hungarian Method 230

Bibliography 231

Case Study: Scheduling Appointments at Australian Tourist Commission Trade Events 232
Problems 236

Chapter 6 Network Model 247
 6.1 Scope and Definition of Network Models 247
 6.2 Minimal Spanning Tree Algorithm 250
 6.3 Shortest-Route Problem 251
 6.3.1 Examples of the Shortest-Route Applications 252
 6.3.2 Shortest-Route Algorithms 255
 6.3.3 Linear Programming Formulation of the Shortest-Route Problem 261
 6.4 Maximal Flow Model 265
 6.4.1 Enumeration of Cuts 266
 6.4.2 Maximal Flow Algorithm 267
 6.4.3 Linear Programming Formulation of Maximal Flow Mode 272
 6.5 CPM and PERT 273
 6.5.1 Network Representation 274
 6.5.2 Critical Path Method (CPM) Computations 276
 6.5.3 Construction of the Time Schedule 279
Contents

6.5.4 Linear Programming Formulation of CPM 282
6.5.5 PERT Networks 283

Bibliography 285

Case Study: Saving Federal Travel Dollars 286

Problems 289

Chapter 7 Advanced Linear Programming 305

7.1 Simplex Method Fundamentals 305
7.1.1 From Extreme Points to Basic Solutions 306
7.1.2 Generalized Simplex Tableau in Matrix Form 309

7.2 Revised Simplex Method 311
7.2.1 Development of the Optimality and Feasibility Conditions 311
7.2.2 Revised Simplex Algorithm 312
7.2.3 Computational Issues in the Revised Simplex Method 315

7.3 Bounded-Variables Algorithm 317

7.4 Duality 322
7.4.1 Matrix Definition of the Dual Problem 322
7.4.2 Optimal Dual Solution 322

7.5 Parametric Linear Programming 325
7.5.1 Parametric Changes in C 325
7.5.2 Parametric Changes in b 327

7.6 More Linear Programming Topics 329

Bibliography 330

Problems 330

Chapter 8 Goal Programming 341

8.1 A Goal Programming Formulation 341

8.2 Goal Programming Algorithms 343
8.2.1 The Weights Method 343
8.2.2 The Preemptive Method 345

Bibliography 350

Case Study: Allocation of Operating Room Time in Mount Sinai Hospital 350

Problems 354

Chapter 9 Integer Linear Programming 359

9.1 Illustrative Applications 359
9.1.1 Capital Budgeting 360
9.1.2 Set-Covering Problem 361
9.1.3 Fixed-Charge Problem 362
9.1.4 Either-Or and If-Then Constraints 364

9.2 Integer Programming Algorithms 366
9.2.1 Branch-and-Bound (B&B) Algorithm 367
9.2.2 Cutting-Plane Algorithm 373

Bibliography 378
Problems 379

Chapter 10 Heuristic Programming 397
10.1 Introduction 397
10.2 Greedy (Local Search) Heuristics 398
10.2.1 Discrete Variable Heuristic 399
10.2.2 Continuous Variable Heuristic 401
10.3 Metaheuristic 404
10.3.1 Tabu Search Algorithm 404
Summary of Tabu Search Algorithm 408
10.3.2 Simulated Annealing Algorithm 408
Summary of Simulated Annealing Algorithm 410
10.3.3 Genetic Algorithm 411
Summary of Genetic Algorithm 414
10.4 Application of Metaheuristics to Integer Linear Programs 415
10.4.1 ILP Tabu Algorithm 416
10.4.2 ILP Simulated Annealing Algorithm 418
10.4.3 ILP Genetic Algorithm 420
10.5 Introduction to Constraint Programming (CP) 423
Bibliography 425
Problems 425

Chapter 11 Traveling Salesperson Problem (TSP) 435
11.1 Scope of the TSP 435
11.2 TSP Mathematical Model 437
11.3 Exact TSP Algorithms 441
11.3.1 B&B Algorithm 441
11.3.2 Cutting-Plane Algorithm 444
11.4 Local Search Heuristics 445
11.4.1 Nearest-Neighbor Heuristic 445
11.4.2 Reversal Heuristic 446
11.5 Metaheuristics 449
11.5.1 TSP Tabu Algorithm 449
11.5.2 TSP Simulated Annealing Algorithm 452
Chapter 12 Deterministic Dynamic Programming 469

12.1 Recursive Nature of Dynamic Programming (DP) Computations 469
12.2 Forward and Backward Recursion 473
12.3 Selected DP Applications 474
 12.3.1 Knapsack/Fly-Away Kit/Cargo-Loading Model 475
 12.3.2 Workforce Size Model 480
 12.3.3 Equipment Replacement Model 482
 12.3.4 Investment Model 485
 12.3.5 Inventory Models 488
12.4 Problem of Dimensionality 488
Bibliography 490
Case Study: Optimization of Crosscutting and Log Allocation at Weyerhaeuser 491
Problems 494

Chapter 13 Inventory Modeling (with Introduction to Supply Chains) 501

13.1 Inventory Problem: A Supply Chain Perspective 501
 13.1.1 An Inventory Metric in Supply Chains 502
 13.1.2 Elements of the Inventory Optimization Model 504
13.2 Role of Demand in the Development of Inventory Models 505
13.3 Static Economic-Order-Quantity Models 507
 13.3.1 Classical EOQ Model 507
 13.3.2 EOQ with Price Breaks 511
 13.3.3 Multi-Item EOQ with Storage Limitation 514
13.4 Dynamic EOQ Models 517
 13.4.1 No-Setup EOQ Model 518
 13.4.2 Setup EOQ Model 521
13.5 Sticky Issues in Inventory Modeling 530
Bibliography 531
Case Study: Kroger Improves Pharmacy Inventory Management 531
Problems 535
Chapter 14 Review of Basic Probability 543

14.1 Laws of Probability 543
 14.1.1 Addition Law of Probability 544
 14.1.2 Conditional Law of Probability 544

14.2 Random Variables and Probability Distributions 545

14.3 Expectation of a Random Variable 547
 14.3.1 Mean and Variance (Standard Deviation) of a Random Variable 547
 14.3.2 Joint Random Variables 548

14.4 Four Common Probability Distributions 551
 14.4.1 Binomial Distribution 551
 14.4.2 Poisson Distribution 551
 14.4.3 Negative Exponential Distribution 552
 14.4.4 Normal Distribution 553

14.5 Empirical Distributions 555

Bibliography 560
Problems 560

Chapter 15 Decision Analysis and Games 567

15.1 Decision Making Under Certainty—Analytic Hierarchy Process (AHP) 567

15.2 Decision Making Under Risk 574
 15.2.1 Decision Tree–Based Expected Value Criterion 574
 15.2.2 Variants of the Expected Value Criterion 576

15.3 Decision Under Uncertainty 581

15.4 Game Theory 585
 15.4.1 Optimal Solution of Two-Person Zero-Sum Games 585
 15.4.2 Solution of Mixed Strategy Games 587

Bibliography 592
Case Study: Booking Limits in Hotel Reservations 593
Problems 595

Chapter 16 Probabilistic Inventory Models 611

16.1 Continuous Review Models 611
 16.1.1 "Probabilitized" EOQ Model 611
 16.1.2 Probabilistic EOQ Model 613

16.2 Single-Period Models 617
 16.2.1 No-Setup Model (Newsvendor Model) 618
 16.2.2 Setup Model (s-S Policy) 620
16.3 Multiperiod Model 623
Bibliography 625
Problems 625

Chapter 17 Markov Chains 629
17.1 Definition of a Markov Chain 629
17.2 Absolute and n-Step Transition Probabilities 632
17.3 Classification of the States in a Markov Chain 633
17.4 Steady-State Probabilities and Mean Return Times of Ergodic Chains 634
17.5 First Passage Time 636
17.6 Analysis of Absorbing States 639
Bibliography 642
Problems 642

Chapter 18 Queuing Systems 653
18.1 Why Study Queues? 653
18.2 Elements of a Queuing Model 654
18.3 Role of Exponential Distribution 656
18.4 Pure Birth and Death Models (Relationship Between the Exponential and Poisson Distributions) 657
18.4.1 Pure Birth Model 658
18.4.2 Pure Death Model 661
18.5 General Poisson Queuing Model 662
18.6 Specialized Poisson Queues 665
18.6.1 Steady-State Measures of Performance 667
18.6.2 Single-Server Models 670
18.6.3 Multiple-Server Models 674
18.6.4 Machine Servicing Model—(M/M/R): (GD/K/K), R < K 680
18.7 (M/G/1):(GD/∞/∞)—Pollaczek-Khintchine (P-K) Formula 682
18.8 Other Queuing Models 683
18.9 Queuing Decision Models 684
18.9.1 Cost Models 684
18.9.2 Aspiration Level Model 686
Bibliography 688
Case Study: Analysis of an Internal Transport System in a Manufacturing Plant 688
Problems 690

Chapter 19 Simulation Modeling 711
19.1 Monte Carlo Simulation 711
19.2 Types of Simulation 715
19.3 Elements of Discrete Event Simulation 715
 19.3.1 Generic Definition of Events 715
 19.3.2 Sampling from Probability Distributions 716
19.4 Generation of Random Numbers 720
19.5 Mechanics of Discrete Simulation 722
 19.5.1 Manual Simulation of a Single-Server Model 722
 19.5.2 Spreadsheet-Based Simulation of the Single-Server Model 726
19.6 Methods for Gathering Statistical Observations 728
 19.6.1 Subinterval Method 729
 19.6.2 Replication Method 730
19.7 Simulation Languages 731
Bibliography 733
Problems 733

Chapter 20 Classical Optimization Theory 741
20.1 Unconstrained Problems 741
 20.1.1 Necessary and Sufficient Conditions 742
 20.1.2 The Newton-Raphson Method 744
20.2 Constrained Problems 746
 20.2.1 Equality Constraints 747
 20.2.2 Inequality Constraints—Karush–Kuhn–Tucker (KKT) Conditions 754
Bibliography 758
Problems 758

Chapter 21 Nonlinear Programming Algorithms 763
21.1 Unconstrained Algorithms 763
 21.1.1 Direct Search Method 763
 21.1.2 Gradient Method 766
21.2 Constrained Algorithms 769
 21.2.1 Separable Programming 770
 21.2.2 Quadratic Programming 777
21.2.3 Chance-Constrained Programming 781
21.2.4 Linear Combinations Method 785
21.2.5 SUMT Algorithm 787
Bibliography 788
Problems 788

Appendix A Statistical Tables 793

Appendix B Partial Answers to Selected Problems 797

Index 833