Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xiii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xvii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xxi</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Evolution of trading infrastructure</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Quantitative strategies and time-scales</td>
<td>5</td>
</tr>
<tr>
<td>1.3 Statistical arbitrage and debates about EMH</td>
<td>6</td>
</tr>
<tr>
<td>1.4 Quantitative funds, mutual funds, hedge funds</td>
<td>8</td>
</tr>
<tr>
<td>1.5 Data, analytics, models, optimization, algorithms</td>
<td>10</td>
</tr>
<tr>
<td>1.6 Interdisciplinary nature of the subject and how the book can be used</td>
<td>11</td>
</tr>
<tr>
<td>1.7 Supplements and problems</td>
<td>13</td>
</tr>
<tr>
<td>2 Statistical Models and Methods for Quantitative Trading</td>
<td>17</td>
</tr>
<tr>
<td>2.1 Stylized facts on stock price data</td>
<td>18</td>
</tr>
<tr>
<td>2.1.1 Time series of low-frequency returns</td>
<td>18</td>
</tr>
<tr>
<td>2.1.2 Discrete price changes in high-frequency data</td>
<td>18</td>
</tr>
<tr>
<td>2.2 Brownian motion models for speculative prices</td>
<td>22</td>
</tr>
<tr>
<td>2.3 MPT as a “walking shoe” down Wall Street</td>
<td>22</td>
</tr>
<tr>
<td>2.4 Statistical underpinnings of MPT</td>
<td>24</td>
</tr>
<tr>
<td>2.4.1 Multifactor pricing models</td>
<td>24</td>
</tr>
<tr>
<td>2.4.2 Bayes, shrinkage, and Black-Litterman estimators</td>
<td>25</td>
</tr>
<tr>
<td>2.4.3 Bootstrapping and the resampled frontier</td>
<td>26</td>
</tr>
<tr>
<td>2.5 A new approach incorporating parameter uncertainty</td>
<td>27</td>
</tr>
<tr>
<td>2.5.2 Computation of the optimal weight vector</td>
<td>28</td>
</tr>
<tr>
<td>2.5.3 Bootstrap estimate of performance and NPEB</td>
<td>29</td>
</tr>
<tr>
<td>2.6 From random walks to martingales that match stylized facts</td>
<td>30</td>
</tr>
<tr>
<td>2.6.1 From Gaussian to Paretnian random walks</td>
<td>31</td>
</tr>
<tr>
<td>2.6.2 Random walks with optional sampling times</td>
<td>32</td>
</tr>
<tr>
<td>2.6.3 From random walks to ARIMA, GARCH</td>
<td>35</td>
</tr>
<tr>
<td>2.7 Neo-MPT involving martingale regression models</td>
<td>37</td>
</tr>
</tbody>
</table>
Contents

2.7.1 Incorporating time series effects in NPEB 38
2.7.2 Optimizing information ratios along efficient frontier 38
2.7.3 An empirical study of neo-MPT 39

2.8 Statistical arbitrage and strategies beyond EMH 41
2.8.1 Technical rules and the statistical background 41
2.8.2 Time series, momentum, and pairs trading strategies 43
2.8.3 Contrarian strategies, behavioral finance, and investors' cognitive biases 44
2.8.4 From value investing to global macro strategies 44
2.8.5 In-sample and out-of-sample evaluation 45

2.9 Supplements and problems 46

3 Active Portfolio Management and Investment Strategies 61

3.1 Active alpha and beta in portfolio management 62
3.1.1 Sources of alpha .. 63
3.1.2 Exotic beta beyond active alpha 63
3.1.3 A new approach to active portfolio optimization 64

3.2 Transaction costs, and long-short constraints 67
3.2.1 Cost of transactions and its components 67
3.2.2 Long-short and other portfolio constraints 68

3.3 Multi-period portfolio management 69
3.3.1 The Samuelson-Merton theory 69
3.3.2 Incorporating transaction costs into Merton’s problem ... 72
3.3.3 Multi-period capital growth and volatility pumping 73
3.3.4 Multi-period mean-variance portfolio rebalancing 74
3.3.5 Dynamic mean-variance portfolio optimization 75
3.3.6 Dynamic portfolio selection 76

3.4 Supplementary notes and comments 78
3.5 Exercises ... 101

4 Econometrics of Transactions in Electronic Platforms 103

4.1 Transactions and transactions data 104
4.2 Models for high-frequency data 104
4.2.1 Roll’s model of bid-ask bounce 105
4.2.2 Market microstructure model with additive noise 106

4.3 Estimation of integrated variance of \(X_t \) 107
4.3.1 Sparse sampling methods 108
4.3.2 Averaging method over subsamples 109
4.3.3 Method of two time-scales 109
4.3.4 Method of kernel smoothing: Realized kernels 110
4.3.5 Method of pre-averaging 111
4.3.6 From MLE of volatility parameter to QMLE of \(|X|^T \) .. 112

4.4 Estimation of covariation of multiple assets 113
Contents

4.4.1 Asynchronicity and the Epps effect .. 113
4.4.2 Synchronization procedures ... 114
4.4.3 QMLE for covariance and correlation estimation 115
4.4.4 Multivariate realized kernels and two-scale estimators 116
4.5 Fourier methods .. 118
 4.5.1 Fourier estimator of $[X]_T$ and spot volatility 118
 4.5.2 Statistical properties of Fourier estimators 120
 4.5.3 Fourier estimators of spot co-volatilities 121
4.6 Other econometric models involving TAQ 122
 4.6.1 ACD models of inter-transaction durations 123
 4.6.2 Self-exciting point process models 124
 4.6.3 Decomposition of D_t and generalized linear models 125
 4.6.4 McCulloch and Tsay’s decomposition 126
 4.6.5 Joint modeling of point process and its marks 127
 4.6.6 Realized GARCH and other predictive models 128
 4.6.7 Jumps in efficient price process and power variation 130
4.7 Supplementary notes and comments .. 132
4.8 Exercises ... 139

5 Limit Order Book: Data Analytics and Dynamic Models 143
 5.1 From market data to limit order book (LOB) 144
 5.2 Stylized facts of LOB data .. 145
 5.2.1 Book price adjustment ... 145
 5.2.2 Volume imbalance and other indicators 148
 5.3 Fitting a multivariate point process to LOB data 151
 5.3.1 Marketable orders as a multivariate point process 151
 5.3.2 Empirical illustration ... 153
 5.4 LOB data analytics via machine learning 157
 5.5 Queueing models of LOB dynamics .. 159
 5.5.1 Diffusion limits of the level-1 reduced-form model 160
 5.5.2 Fluid limit of order positions 163
 5.5.3 LOB-based queue-reactive model 166
 5.6 Supplements and problems .. 169

6 Optimal Execution and Placement .. 183
 6.1 Optimal execution with a single asset 184
 6.1.1 Dynamic programming solution of problem (6.2) 185
 6.1.2 Continuous-time models and calculus of variations 187
 6.1.3 Myth: Optimality of deterministic strategies 189
 6.2 Multiplicative price impact model 190
 6.2.1 The model and stochastic control problem 190
 6.2.2 HJB equation for the finite-horizon case 191
 6.2.3 Infinite-horizon case $T = \infty$ 193
6.2.4 Price manipulation and transient price impact 196
6.3 Optimal execution using the LOB shape 196
6.3.1 Cost minimization .. 199
6.3.2 Optimal strategy for Model 1 202
6.3.3 Optimal strategy for Model 2 203
6.3.4 Closed-form solution for block-shaped LOBs 204
6.4 Optimal execution for portfolios 204
6.5 Optimal placement ... 207
6.5.1 Markov random walk model with mean reversion 208
6.5.2 Continuous-time Markov chain model 211
6.6 Supplements and problems ... 215

7 Market Making and Smart Order Routing 221

7.1 Ho and Stoll's model and the Avellaneda-Stoikov policy 222
7.2 Solution to the HJB equation and subsequent extensions ... 223
7.3 Impulse control involving limit and market orders 225
7.3.1 Impulse control for the market maker 225
7.3.2 Control formulation .. 226
7.4 Smart order routing and dark pools 228
7.5 Optimal order splitting among exchanges in SOR 230
7.5.1 The cost function and optimization problem 231
7.5.2 Optimal order placement across K exchanges 232
7.5.3 A stochastic approximation method 233
7.6 Censored exploration-exploitation for dark pools 234
7.6.1 The SOR problem and a greedy algorithm 234
7.6.2 Modified Kaplan-Meier estimate T_i 235
7.6.3 Exploration, exploitation, and optimal allocation 236
7.7 Stochastic Lagrangian optimization in dark pools 237
7.7.1 Lagrangian approach via stochastic approximation 238
7.7.2 Convergence of Lagrangian recursion to optimizer 240
7.8 Supplementary notes and comments 241
7.9 Exercises .. 248

8 Informatics, Regulation and Risk Management 251

8.1 Some quantitative strategies 253
8.2 Exchange infrastructure .. 255
8.2.1 Order gateway .. 258
8.2.2 Matching engine .. 258
8.2.3 Market data dissemination 259
8.2.4 Order fee structure .. 260
8.2.5 Colocation service .. 262
8.2.6 Clearing and settlement 263
8.3 Strategy informatics and infrastructure 264
8.3.1 Market data handling ... 264
8.3.2 Alpha engine ... 265
8.3.3 Order management ... 266
8.3.4 Order type and order qualifier 266
8.4 Exchange rules and regulations 269
 8.4.1 SIP and Reg NMS .. 269
 8.4.2 Regulation SHO .. 272
 8.4.3 Other exchange-specific rules 273
 8.4.4 Circuit breaker .. 274
 8.4.5 Market manipulation 274
8.5 Risk management ... 274
 8.5.1 Operational risk .. 275
 8.5.2 Strategy risk .. 277
8.6 Supplementary notes and comments 279
8.7 Exercises .. 289

A Martingale Theory 295
 A.1 Discrete-time martingales 295
 A.2 Continuous-time martingales 298

B Markov Chain and Related Topics 303
 B.1 Generator Q of CTMC 303
 B.2 Potential theory for Markov chains 304
 B.3 Markov decision theory 304

C Doubly Stochastic Self-Exciting Point Processes 307
 C.1 Martingale theory and compensators of multivariate counting processes 307
 C.2 Doubly stochastic point process models 308
 C.3 Likelihood inference in point process models 309
 C.4 Simulation of doubly stochastic SEPP 312

D Weak Convergence and Limit Theorems 315
 D.1 Donsker's theorem and its extensions 316
 D.2 Queuing system and limit theorems 317

Bibliography ... 319

Index ... 349