Optimal Financial Decision Making under Uncertainty
# Contents

## 1 Multi-Period Risk Measures and Optimal Investment Policies

Zhiping Chen, Giorgio Consigli, Jia Liu, Gang Li, Tianwen Fu, and Qianhui Hu

1.1 Introduction ......................................................... 2
1.2 Dynamic Risk Control ............................................. 2
  1.2.1 Key Properties of Dynamic Measures ....................... 4
  1.2.2 Time Consistency .............................................. 7
  1.2.3 Discussion ................................................... 10
1.3 Multi-Period Risk Measures ....................................... 11
  1.3.1 Statistical Estimates of Dynamic Risk Measures ............. 13
  1.3.2 Coherent and Time Consistent Risk Measures ............... 16
1.4 Dynamic Risk Control and Risk Measures Selection .......... 19
  1.4.1 Mean-Variance Models ....................................... 20
  1.4.2 Time Inconsistent Mean-CVaR Models ....................... 22
  1.4.3 Time Inconsistency and Time Consistent Revisions ........ 23
  1.4.4 Time Consistent Models ..................................... 24
  1.4.5 Practical Solution Methods for Optimal Dynamic Risk Control ...................................................... 27
1.5 Conclusions and Future Research ................................ 29
References ............................................................. 31

## 2 Asset Price Dynamics: Shocks and Regimes

Leonard MacLean and Yonggan Zhao

2.1 Introduction ........................................................ 36
2.2 Risk Factors in Financial Markets ................................ 37
  2.2.1 Regimes from Factor Thresholds .............................. 40
  2.2.2 Regimes from Hidden States .................................. 42
  2.2.3 Regime Fitting ............................................... 43
2.3 Discrete Time Asset Pricing Model .............................. 45
  2.3.1 Model with Jumps ............................................ 46
  2.3.2 Model with Regimes .......................................... 47
3 Scenario Optimization Methods in Portfolio Analysis and Design

Giuseppe Carlo Calafiore

3.1 Introduction

3.1.1 Definitions and Preliminaries

3.2 Single-Period Analysis of Portfolio Shortfall Probability

3.2.1 The Shortfall Probability of the $k$-th Order Sample

3.2.2 The $k$-th Order Sample as an Approximator of the $\epsilon$-Quantile

3.3 Single-Period Scenario Design

3.3.1 The Return Selection Rule

3.3.2 The Shortfall Probability

3.3.3 Shortfall Probability of the Optimal Data-Driven Portfolio

3.4 Multi-Period Scenario Design

3.4.1 Open-Loop Strategy

3.4.2 Closed-Loop Strategy with Affine Policies

3.4.3 Sliding-Horizon Implementation

3.5 Scenario Methods for Single-Period Robust Portfolio Design

3.5.1 Robust Portfolio Allocation Models

3.5.2 The Scenario Approach

3.6 A Practical Asset Allocation Example

3.7 Conclusions

4 Robust Approaches to Pension Fund Asset Liability Management Under Uncertainty

Dessislava Pachamanova, Nalan Gülpinar, and Ethem Çanakoğlu

4.1 Introduction

4.2 ALM Model for Pension Funds: Problem Statement

4.3 Scenario-Based ALM Model for Pension Funds

4.4 Robust Investment Decisions

4.5 Robust ALM Models for Pension Funds

4.5.1 Robust ALM Model Formulation with Symmetric Uncertainty Sets

4.5.2 Robust ALM Model Formulation with Asymmetric Uncertainty Sets

4.5.3 Selecting Inputs to the Robust Optimization Models
4.6 Computational Experiments ........................................... 106
  4.6.1 Design of Experiments and Data ............................. 107
  4.6.2 Computational Results ......................................... 110
4.7 Concluding Remarks .................................................. 115
References ................................................................. 117

5 Liability-Driven Investment in Longevity Risk Management .......... 121
Helena Aro and Teemu Pennanen
  5.1 Introduction .......................................................... 121
  5.2 The Asset-Liability Management Problem ........................ 123
  5.3 Investment Strategies .............................................. 124
    5.3.1 Non-liability-Driven Investment Strategies .................. 124
    5.3.2 Liability-Driven Investment Strategies ...................... 125
  5.4 Diversification Procedure ........................................ 127
  5.5 Numerical Results ................................................ 129
  5.6 Conclusions ....................................................... 131
  5.7 Assets and Liabilities ............................................ 132
References ................................................................. 135

6 Pricing Multiple Exercise American Options by Linear Programming ........................................ 137
Monia Giandomenico and Mustafa Ç. Pınar
  6.1 Introduction .......................................................... 137
  6.2 The Stochastic Scenario Tree and American
        Contingent Claims .............................................. 139
  6.3 The Formulation ................................................... 141
  6.4 The Main Result ................................................... 142
    6.4.1 The Case of Non-zero Interest Rate ......................... 145
    6.4.2 A Min–Max Representation .................................. 146
  6.5 Conclusions ....................................................... 148
References ................................................................. 149

7 Optimizing a Portfolio of Liquid and Illiquid Assets .............. 151
John M. Mulvey, Woo Chang Kim, and Changle Lin
  7.1 Introduction .......................................................... 151
  7.2 All Bonds Strategy vs. All Alternative Strategy ............... 153
  7.3 Tracking Indexes for Alternative Asset Categories ............. 157
  7.4 A Portfolio of Tactics ............................................ 166
    7.4.1 Overlay Approach ............................................. 166
    7.4.2 Constructing Optimal Portfolios via
        Multi-Stage Stochastic Programming .......................... 168
  7.5 Conclusions ....................................................... 173
References ................................................................. 174
8 Stabilizing Implementable Decisions in Dynamic Stochastic Programming
Michael A.H. Dempster, Elena A. Medova, and Yee Sook Yong

8.1 Introduction and Background ........................................ 178
8.2 Review of Pioneer Guaranteed Return Funds ......................... 180
8.3 Evaluating Under-estimation of Portfolio Risk ...................... 181
  8.3.1 Position Limits Based on a Volatility Constraint .......... 183
  8.3.2 Position Limits Based on Asset Returns and Volatility Proportional Constraints .................... 188
  8.3.3 Summary ............................................................ 188
8.4 Empirical Results ....................................................... 189
8.5 Conclusions and Future Directions .................................. 195
References ........................................................................... 199

9 The Growth Optimal Investment Strategy Is Secure, Too
László Györfi, György Ottucsák, and Harro Walk

9.1 Introduction ...................................................................... 201
9.2 Constantly Rebalanced Portfolio Selection .......................... 202
9.3 Time Varying Portfolio Selection ...................................... 211
References ........................................................................... 221

10 Heuristics for Portfolio Selection
Manfred Gilli and Enrico Schumann

10.1 Introduction ..................................................................... 226
10.2 Of Problems, Models and Methods .................................. 228
  10.2.1 A One-Period Investment Model ............................... 228
  10.2.2 Reality to Model, and Back ...................................... 229
10.3 Heuristics ....................................................................... 232
  10.3.1 What Are Heuristics? ................................................ 232
  10.3.2 Principles ............................................................... 234
  10.3.3 Constraints ............................................................. 236
  10.3.4 Random Solutions .................................................. 237
10.4 An Example: Threshold Accepting ................................... 238
  10.4.1 The Algorithm ........................................................ 239
  10.4.2 Implementation ....................................................... 240
10.5 An Example: Portfolio Selection with TA .......................... 243
  10.5.1 Data, Backtesting Scheme and Reporting of Results .... 243
  10.5.2 ‘Genesis’ of a Model ................................................. 244
  10.5.3 Step 1: Optimisation of Tracking Error and Excess Return ......................................................... 245
  10.5.4 Step 2: Optimisation of Tracking Error, Excess Return and $\rho_{r_p,r_M}$ ................................... 246
## 10.5.5 Step 3: Optimisation of Tracking Error, Excess Return, $\rho_{p,p}$ and $\rho_{p,r}$

---

## 10.5.6 Step 4: Optimisation of Tracking Error, Excess Return, $\rho_{p,p}$, $\rho_{r,r}$ and $\mathcal{D}_{\max}$

---

## 10.6 Conclusion

---

## References

---

## 11 Optimal Financial Decision Making Under Uncertainty

Giorgio Consigli, Daniel Kuhn, and Paolo Brandimarte

### 11.1 The Domain of Financial Optimization

---

### 11.2 A Changing Financial Landscape

---

### 11.3 The Elements of a Decision Model

11.3.1 Discrete-Time Stochastic Control

11.3.2 The Interplay Between Model Building and Solution Method

---

### 11.4 Asset-Liability Management

11.4.1 An Overview of Financial Planning Problems

11.4.2 A Simple ALM Model

---

### 11.5 Solution Methods and Decision Support

11.5.1 Stochastic Programming

11.5.2 Dynamic Optimization Via Decision Rules

---

### 11.6 Open Issues

11.6.1 Probability Distributions and Optimization

11.6.2 Dynamic Time Consistency

11.6.3 Practical Financial Optimization

---

### 11.7 Conclusions

---

## References

---

## Index

---