Contents

Preface to the fourth edition — v
Preface to the third edition — vi
Preface to the second edition — vii
Preface to the first edition — viii

Part I: Mathematical finance in one period

1 Arbitrage theory — 3
 1.1 Assets, portfolios, and arbitrage opportunities — 3
 1.2 Absence of arbitrage and martingale measures — 7
 1.3 Derivative securities — 18
 1.4 Complete market models — 29
 1.5 Geometric characterization of arbitrage-free models — 35
 1.6 Contingent initial data — 41

2 Preferences — 56
 2.1 Preference relations and their numerical representation — 57
 2.2 Von Neumann–Morgenstern representation — 63
 2.3 Expected utility — 74
 2.4 Stochastic dominance — 92
 2.5 Robust preferences on asset profiles — 105
 2.6 Probability measures with given marginals — 124

3 Optimality and equilibrium — 134
 3.1 Portfolio optimization and the absence of arbitrage — 134
 3.2 Exponential utility and relative entropy — 143
 3.3 Optimal contingent claims — 154
 3.4 Optimal payoff profiles for uniform preferences — 164
 3.5 Robust utility maximization — 168
 3.6 Microeconomic equilibrium — 176

4 Monetary measures of risk — 194
 4.1 Risk measures and their acceptance sets — 195
 4.2 Robust representation of convex risk measures — 206
 4.3 Convex risk measures on L^∞ — 221
4.4 Value at Risk — 230
4.5 Law-invariant risk measures — 239
4.6 Concave distortions — 245
4.7 Comonotonic risk measures — 255
4.8 Measures of risk in a financial market — 264
4.9 Utility-based shortfall risk and divergence risk measures — 276

Part II: Dynamic hedging

5 Dynamic arbitrage theory — 291
5.1 The multi-period market model — 291
5.2 Arbitrage opportunities and martingale measures — 296
5.3 European contingent claims — 305
5.4 Complete markets — 319
5.5 The binomial model — 323
5.6 Exotic derivatives — 330
5.7 Convergence to the Black–Scholes price — 336

6 American contingent claims — 357
6.1 Hedging strategies for the seller — 357
6.2 Stopping strategies for the buyer — 363
6.3 Arbitrage-free prices — 375
6.4 Stability under pasting — 381
6.5 Lower and upper Snell envelopes — 387

7 Superhedging — 394
7.1 \mathcal{P}-supermartingales — 394
7.2 Uniform Doob decomposition — 396
7.3 Superhedging of American and European claims — 399
7.4 Superhedging with liquid options — 409

8 Efficient hedging — 422
8.1 Quantile hedging — 422
8.2 Hedging with minimal shortfall risk — 429
8.3 Efficient hedging with convex risk measures — 440

9 Hedging under constraints — 449
9.1 Absence of arbitrage opportunities — 449
9.2 Uniform Doob decomposition — 459
9.3 Upper Snell envelopes — 465
9.4 Superhedging and risk measures — 471
Contents

10 Minimizing the hedging error — 475
 10.1 Local quadratic risk — 475
 10.2 Minimal martingale measures — 486
 10.3 Variance-optimal hedging — 498

11 Dynamic risk measures — 506
 11.1 Conditional risk measures and their robust representation — 506
 11.2 Time consistency — 516

Appendix — 527
 A.1 Convexity — 527
 A.2 Absolutely continuous probability measures — 534
 A.3 Quantile functions — 538
 A.4 The Neyman–Pearson lemma — 550
 A.5 The essential supremum of a family of random variables — 552
 A.6 Spaces of measures — 554
 A.7 Some functional analysis — 564

Bibliographical notes — 570

References — 576

List of symbols — 587

Index — 588