Handbook of High-Frequency Trading and Modeling in Finance

Edited by
IONUT FLORESCU
MARIA C. MARIANI
H. EUGENE STANLEY
FREDERI G. VIENS

WILEY
Notes on Contributors xiii
Preface xv

1 Trends and Trades 1
Michael Carlisle, Olympia Hadjiliadis, and Ioannis Stamos

1.1 Introduction 1
1.2 A trend-based trading strategy 3
 1.2.1 Signaling and trends 3
 1.2.2 Gain over a subperiod 5
1.3 CUSUM timing 7
 1.3.1 Cusum process and stopping time 7
 1.3.2 A CUSUM timing scheme 10
 1.3.3 US treasury notes, CUSUM timing 11
1.4 Example: Random walk on ticks 12
 1.4.1 Random walk expected gain over a subperiod 15
 1.4.2 Simple random walk, CUSUM timing 18
 1.4.3 Lazy simple random walk, cusum timing 21
1.5 CUSUM strategy Monte Carlo 24
1.6 The effect of the threshold parameter 27
1.7 Conclusions and future work 39

Appendix: Tables 40
References 47

2 Gaussian Inequalities and Tranche Sensitivities 51
Claas Becker and Ambar N. Sengupta

2.1 Introduction 51
2.2 The tranche loss function 52
2.3 A sensitivity identity 54
2.4 Correlation sensitivities 55
Acknowledgment 58
References 58
3 A Nonlinear Lead Lag Dependence Analysis of Energy Futures: Oil, Coal, and Natural Gas 61
Germán G. Creamer and Bernardo Creamer
3.1 Introduction 61
 3.1.1 Causality analysis 62
3.2 Data 64
3.3 Estimation techniques 64
3.4 Results 65
3.5 Discussion 67
3.6 Conclusions 69
Acknowledgments 69
References 70

4 Portfolio Optimization: Applications in Quantum Computing 73
Michael Marzec
4.1 Introduction 73
4.2 Background 75
 4.2.1 Portfolios and optimization 76
 4.2.2 Algorithmic complexity 77
 4.2.3 Performance 78
 4.2.4 Ising model 79
 4.2.5 Adiabatic quantum computing 79
4.3 The models 80
 4.3.1 Financial model 81
 4.3.2 Graph-theoretic combinatorial optimization models 82
 4.3.3 Ising and Qubo models 83
 4.3.4 Mixed models 84
4.4 Methods 84
 4.4.1 Model implementation 85
 4.4.2 Input data 85
 4.4.3 Mean-variance calculations 85
 4.4.4 Implementing the risk measure 86
 4.4.5 Implementation mapping 86
4.5 Results 88
 4.5.1 The simple correlation model 88
 4.5.2 The restricted minimum-risk model 91
 4.5.3 The WMIS minimum-risk, max return model 94
6 Detecting Jumps in High-Frequency Prices Under Stochastic Volatility: A Review and a Data-Driven Approach 137
Ping-Chen Tsai and Mark B. Shackleton

6.1 Introduction 137
6.2 Review on the intraday jump tests 140
 6.2.1 Realized volatility measure and the BNS tests 140
 6.2.2 The ABD and LM tests 142
6.3 A data-driven testing procedure 146
 6.3.1 Spy data and microstructure noise 146
 6.3.2 A generalized testing procedure 149
6.4 Simulation study 153
 6.4.1 Model specification 153
 6.4.2 Simulation results 158
6.5 Empirical results 161
 6.5.1 Results on the backward-looking test 162
 6.5.2 Results on the interpolated test 165
6.6 Conclusion 165

Acknowledgments 166

Appendix 6.A: Least-square estimation of HAR-MA (2) model for log(BP) of SPY 167
Appendix 6.B: Estimation of ARMA (2, 1) model for log(BP) of SPY 168
Appendix 6.C: Minimized loss function loss(ρ_1, ρ_2) for SV2FJ_2ρ model, SPY 169
Appendix 6.D.1: Calibration of ξ under SV2FJ_2ρ model at 2-min frequency, $E[N_t] = 0.08$ 170
Appendix 6.D.2: Calibration of ξ under SV2FJ_2ρ model at 2-min frequency, $E[N_t] = 0.40$ 171
Appendix 6.D.3: Calibration of ξ under SV2FJ_2ρ model at 5-min frequency, $E[N_t] = 0.08$ 172
Appendix 6.D.4: Calibration of ξ under SV2FJ_2ρ Model at 5-min frequency, $E[N_t] = 0.40$ 173
Appendix 6.D.5: Calibration of ξ under SV2FJ_2ρ model at 10-min frequency, $E[N_t] = 0.08$ 174
Appendix 6.D.6: Calibration of ξ under SV2FJ_2ρ model at 10-min frequency, $E[N_t] = 0.40$ 175

References 175
7 Hawkes Processes and Their Applications to High-Frequency Data Modeling 183
Baron Law and Frederi G. Viens
7.1 Introduction 183
7.2 Point processes 184
7.3 Hawkes processes 186
 7.3.1 Branching structure representation 188
 7.3.2 Stationarity 188
 7.3.3 Convergence 189
7.4 Statistical inference of Hawkes processes 191
 7.4.1 Simulation 191
 7.4.2 Estimation 194
 7.4.3 Hypothesis testing 197
7.5 Applications of Hawkes processes 198
 7.5.1 Modeling order arrivals 199
 7.5.2 Modeling price jumps 200
 7.5.3 Modeling jump-diffusion 205
 7.5.4 Measuring endogeneity (Reflexivity) 205
Appendix 7.A: Point Processes 207
 7.A.1 Definition 207
 7.A.2 Moments 208
 7.A.3 Marked point processes 209
 7.A.4 Stochastic intensity 209
 7.A.5 Random time change 211
Appendix 7.B: A Brief History of Hawkes processes 211
References 212

8 Multifractal Random Walk Driven by a Hermite Process 221
Alexis Fauth and Ciprian A. Tudor
8.1 Introduction 221
8.2 Preliminaries 224
 8.2.1 Fractional brownian motion and hermite processes 224
 8.2.2 Wiener integrals with respect to the hermite process 226
 8.2.3 Infinitely divisible cascading noise 229
8.3 Multifractal random walk driven by a Hermite process 231
 8.3.1 Definition and existence 231
 8.3.2 Properties of the hermite multifractal random walk 233
8.4 Financial applications 234
 8.4.1 Simulation of the Hmrw 235
 8.4.2 Financial statistics 241
8.5 Concluding remarks 243
References 247

9 Interpolating Techniques and Nonparametric Regression
Methods Applied to Geophysical and Financial Data
Analysis 251
K. Basu and Maria C. Mariani
9.1 Introduction 251
9.2 Nonparametric regression models 253
 9.2.1 Local polynomial regression 255
 9.2.2 Lowess/loess method 257
 9.2.3 Numerical applications 259
9.3 Interpolation methods 271
 9.3.1 Nearest-neighbor interpolation 271
 9.3.2 Bilinear interpolation 272
 9.3.3 Bicubic interpolation 276
 9.3.4 Biharmonic interpolation 277
 9.3.5 Thin plate splines 282
 9.3.6 Numerical applications 285
9.4 Conclusion 287
Acknowledgments 292
References 292

10 Study of Volatility Structures in Geophysics and Finance
Using Garch Models 295
Maria C. Mariani, F. Biney, and I. SenGupta
10.1 Introduction 295
10.2 Short memory models 297
 10.2.1 ARMA(p,q) model 297
 10.2.2 GARCH(p,q) model 297
 10.2.3 IGARCH(1,1) model 298
10.3 Long memory models 298
 10.3.1 ARFIMA(p,d,q) model 299
 10.3.2 ARFIMA(p,d,q)-GARCH(r,s) 299
 10.3.3 Intermediate memory process 300
 10.3.4 Figarch model 300
10.4 Detection and estimation of long memory 302
 10.4.1 Augmented dickey–fuller test (ADF test) 302
 10.4.2 KPSS test 303
 10.4.3 Whittle method 304
10.5 Data collection, analysis, and result 306
 10.5.1 Analysis on dow Jones index (DJIA) returns 306
 10.5.2 Model selection and specification: conditional mean 306
 10.5.3 Conditional mean model (returns) 309
 10.5.4 Model diagnostics: ARMA(2, 2) 309
 10.5.5 Test for ARCH effect 311
 10.5.6 Model selection and specification: conditional variance 313
 10.5.7 Standardized residuals test 314
 10.5.8 Model diagnostics 314
 10.5.9 Returns and variance equation 315
 10.5.10 Standardized residuals test 317
 10.5.11 Model diagnostic of conditional returns with conditional variance 318
 10.5.12 One-step ahead prediction of last 10 observations 330
 10.5.13 Analysis on high-frequency, earthquake, and explosives series 330
10.6 Discussion and conclusion 335
References 337

11 Scale Invariance and Lévy Models Applied to Earthquakes and Financial High-Frequency Data 341
 M. P. Beccar-Varela, Ionut Florescu, and I. SenGupta
 11.1 Introduction 341
 11.2 Governing equations for the deterministic model 342
 11.2.1 Application to geophysical (earthquake data) 343
 11.2.2 Results 344
 11.3 Lévy flights and application to geophysics 345
 11.3.1 Truncated Lévy flight distribution 353
 11.3.2 Results 356
11.4 Application to the high-frequency market data 360
 11.4.1 Methodology 360
 11.4.2 Results 361
11.5 Brief program code description 362
11.6 Conclusion 364
11.7 Appendix 366
 11.A.1 Stable distributions 366
 11.A.2 Characterization of stable distributions 367

References 368

12 Analysis of Generic Diversity in the Fossil Record,
Earthquake Series, and High-Frequency Financial Data 371
M. P. Beccar Varela, F. Biney, Maria C. Mariani, I. SenGupta,
M. Shpak, and P. Bezdek

12.1 Introduction 371
12.2 Statistical preliminaries and results 373
 12.2.1 Sum of exponential random variables with
different parameters 374
12.3 Statistical and numerical analysis 377
12.4 Analysis with Lévy distribution 380
 12.4.1 Characterization of Stable Distributions 383
 12.4.2 Truncated Lévy flight (TLF) distribution 384
 12.4.3 Data analysis with TLF distribution 389
 12.4.4 Sum of Lévy random variables with
different parameters 390
12.5 Analysis of the Stock Indices, high-frequency (tick)
data, and explosive series 394
12.6 Results and discussion 409

Acknowledgments 421

12.A Appendix A—Big ‘O’ notation 421

References 422

Index 425